Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Политропный процесс. Все рассмотренные выше термодинамические процессы являются частными случаями обобщенного политропного процесса.





Все рассмотренные выше термодинамические процессы являются частными случаями обобщенного политропного процесса.

Уравнение политропного процесса

(1.88а)

где n – постоянное число для рассматриваемого процесса и называется показателем политропы.

Количество политропных процессов бесконечно велико, и каждому процессу соответствует свое значение показателя политропы. В общем случае он может принимать значение в интервале – ∞ < n < + ∞.

При n →±∞ уравнение политропы будет выражать изохорный процесс. Для доказательства этого представим уравнение политропного процесса в виде

 

(1.88б)

 

извлечем корень n-й степени из обеих частей уравнения (1.88б) и получим

 

 

(1.88в)

 

При n →±∞, p→1, следовательно v1 = v2, то есть v = const

Если показателю n придать значение равное нулю (n = 0), то

и уравнение политропы превращается в уравнение изобарного процесса р = const.

При n = 1 уравнение политропы (1.88а) принимает вид уравнения изотермы рv = const, а если n = k, то уравнение

опишет кривую адиабаты.

Уравнение политропного процесса выводится на основе уравнений первого закона термодинамики dq = du + pdv и

dq = di – vdp, внутренней энергии u = cvT и энтальпии i = cpT

dq = cdT = cvdT + pdv = cpdT – vdp. (1.89)

Отсюда следует

(с – сv)dT = рdv и (с – ср)dT = – vdр.

Обозначим

 

Тогда Или

 

 

После интегрирования уравнения (1.90) при n = const получим

 

 

то есть уравнение политропного процесса будет иметь вид

 

 

Изменение внутренней энергии в любом процессе идеального газа определяется уравнением u2 – u1 = cv(T2 – T1).

Изменение энтальпии можно найти из уравнений

i = u + (p v) и i = cpT

i2 – i1 = (u2 – u1) + [(p2v2) – (p1v1)] = cp(T2 – T1). (1.93)

Теплоемкость политропного процесса вычисляется из уравнения

 

Тогда

 

 

Где -показатель адиабаты

 

Количество теплоты, подведенной (отведенной) в политропном процессе

dq = cdT, значит q = c(T2 – T1). (1.95)

Работу в процессе можно получить из определения работы

 

и уравнения политропного процесса

 

 

 

 

Получим

 

Бесконечное множество политропных процессов можно разделить на три группы (I, II, III) (рисунок 1.16).

Для первой группы (I) (при – ∞ < n < +1) характерно то, что в процессах расширения теплота расходуется на изменение внутренней энергии и на совершение работы против внешних сил. В процессах сжатия, наоборот, теплота выделяется во внешнюю среду за счет уменьшения внутренней энергии и совершения работы сжатия внешними силами.

Процессы второй группы (II) (при + 1 < n < + k) отличаются тем, что работа расширения в них производится за счет внешней теплоты и за счет изменения внутренней энергии. В процессах сжатия затраченная работа частично переходит в эквивалентное количество теплоты, отводимой во внешнюю среду и на увеличение внутренней энергии.

В процессе третьей группы (III) (при κ < n < + ∞) при расширении внутренняя энергия расходуется на выполнение работы и теплоту, отводимую в окружающую среду, при сжатии – наоборот.

Для нахождения изменения энтропии в политропном процессе воспользуемся первым (dq = du + pdv) и вторым (ds = dq/T) законами термодинамики

 

(1.97)

 

 

Интегрируя уравнение (1.97), получим

 







Дата добавления: 2015-10-15; просмотров: 1143. Нарушение авторских прав; Мы поможем в написании вашей работы!




Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...

Весы настольные циферблатные Весы настольные циферблатные РН-10Ц13 (рис.3.1) выпускаются с наибольшими пределами взвешивания 2...

Хронометражно-табличная методика определения суточного расхода энергии студента Цель: познакомиться с хронометражно-табличным методом опреде­ления суточного расхода энергии...

ОЧАГОВЫЕ ТЕНИ В ЛЕГКОМ Очаговыми легочными инфильтратами проявляют себя различные по этиологии заболевания, в основе которых лежит бронхо-нодулярный процесс, который при рентгенологическом исследовании дает очагового характера тень, размерами не более 1 см в диаметре...

Седалищно-прямокишечная ямка Седалищно-прямокишечная (анальная) ямка, fossa ischiorectalis (ischioanalis) – это парное углубление в области промежности, находящееся по бокам от конечного отдела прямой кишки и седалищных бугров, заполненное жировой клетчаткой, сосудами, нервами и...

Основные структурные физиотерапевтические подразделения Физиотерапевтическое подразделение является одним из структурных подразделений лечебно-профилактического учреждения, которое предназначено для оказания физиотерапевтической помощи...

Почему важны муниципальные выборы? Туристическая фирма оставляет за собой право, в случае причин непреодолимого характера, вносить некоторые изменения в программу тура без уменьшения общего объема и качества услуг, в том числе предоставлять замену отеля на равнозначный...

Studopedia.info - Студопедия - 2014-2025 год . (0.009 сек.) русская версия | украинская версия