Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Розв’язання задач лінійного програмування в цілих числах





Часто в ЗЛП

(14.1)

за обмежень

(14.2)

потрібно одержати розв’язок у якому деякі або всі компоненти мають бути цілими числами. Для цього використовують метод ланцюгів і границь. Схема розв’язання ЗЛП у цілих числах ЦЗЛП полягає в наступному:

1. Розв’язуємо ЗЛП (14.1), (14.2) за допомогою симплекс-методу (або будь-яким іншим методом) без умови цілочисельності змінних. Якщо змінні – цілі числа, то задачу можна вважати розв’язаною. Нехай змінна xk набула не цілого значення xkk, αk має дробову складову.

2. Розв’язуємо дві задачі:

a) (14.1), (14.2) за умови ;

b) (14.1), (14.2) за умови ,

де значок означає цілу частину числа, що в ньому міститься.

3. У випадку цілих розв’язків задач a) і b) порівнюємо одержані значення функцій L. Більше з них – оптимальне значенням , а змінні, за яких воно досягається, – розв’язок задачі.

4. Якщо ж знайдеться таке xl, що не відповідає умові цілочисельності, тоді повторюємо виконання п.2, замінивши xk на xl. Таку процедуру повторюємо доти, доки всі потрібні змінні не стануть цілими.

Приклад. Розв’язати ЗЛП в цілих числах:

(14.3)

(14.4)

Розв’язування. Виконуємо п. 1 відповідно до симплекс-процедури розподілу:

  b x1 x2     b x1 y1
       
y1         x2
y2         y2

 

  b y2 y1
-12 -1  
х2
х1

Розв’язок досягається при . Будемо виділяти клітинки таблиці з базовим елементом. Оскільки, х1 та х2 не цілі числа, переходимо до виконання п. 2.

Використовуючи симплекс-метод, розв’язуємо нову задачу:

  b x1 x2     b x1 y1
       
y1         x2
y2         y2
y3 -4   -1   y3


Оскільки в рядку, де стоїть від’ємний елемент, немає від’ємних чисел, задача розв’язку не має, допустима область порожня. Це означає те, що при х2≥4 розв’язку даної задачі не існує. Розв’яжемо задачу (13.3), (13.4) за додаткової умови . Тут і далі значок означає цілу частину числа, що стоїть у дужках. Отримаємо:

 

  b x1 x2     b x1 y3
       
y1         y1
y2         y2
y3         x2  

 

  b y2 y3
y1
x1
x2


Розв’язок задачі досягається при . Оскільки містить дробову частину, то знову розв’язуємо дві задачі:

а) (14.3), (14.4) за умови

б) (14.3), (14.4) за умови

Розв’язуємо задачу а):

  b x1 x2     b x1 y4
       
y1         x2
y2         y2
y3         y3  
y4         x2    

 

 

  b y3 y4
-11 -2 -3
y1   -1 -4
y2   -2 -3
x1      
x2      

 

Відповідь: .

Розв’язуємо задачу б):

  b x1 x2     b y3 x2
        -4    
y1         x2      
y2         y2      
y3 -2 -1     x1   -1  
y4         y4      


  b y3 y2
-12 -6 -1
y1
x2
x1      
y4


Відповідь: .

Задача знову розпадається на дві:

а) (14.3), (14.4),

б) (14.3), (14.4), .

Розв’язуємо задачу а):

  b x1 x2     b y3 x2
        -4    
y1         x2      
y2         y2      
y3 -2 -1     x1   -1  
y4         y4      


  b y3 y4     b y2 y4
-10   -3   -12 -1  
y1     -4   y1  
y2     -3   y3
x1   -1     x1  
x2 -2       x2      

Відповідь: .

Розв’яжемо задачу б):

  b x1 x2     b x1 y4
        -9    
y1         y1      
y2         y2      
y3 -2 -1     y3 -2 -1  
y4 -3   -1   x2      


  b y1 y4
-9 -2  
x1      
y2   -2 -5
y3 -2    
x2     -1


Відповідь: задача розв’язку не має. Область порожня. Порівнюючи всі розглянуті випадки, одержимо

Аналіз всіх можливих варіантів методу ланцюгів і границь дає можливість зобразити їх наступною схемою (рис. 2).


рис. 2

Завдання для самостійних і контрольних робіт

Розв’язати задачі 1-32 у цілих числах або довести, що вони не мають розв’язку.

 

       
     
       
       
       
       
       
       
       
       
       
       
       
       
       
     

 







Дата добавления: 2015-10-15; просмотров: 1166. Нарушение авторских прав; Мы поможем в написании вашей работы!




Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...

ФАКТОРЫ, ВЛИЯЮЩИЕ НА ИЗНОС ДЕТАЛЕЙ, И МЕТОДЫ СНИЖЕНИИ СКОРОСТИ ИЗНАШИВАНИЯ Кроме названных причин разрушений и износов, знание которых можно использовать в системе технического обслуживания и ремонта машин для повышения их долговечности, немаловажное значение имеют знания о причинах разрушения деталей в результате старения...

Различие эмпиризма и рационализма Родоначальником эмпиризма стал английский философ Ф. Бэкон. Основной тезис эмпиризма гласит: в разуме нет ничего такого...

Индекс гингивита (PMA) (Schour, Massler, 1948) Для оценки тяжести гингивита (а в последующем и ре­гистрации динамики процесса) используют папиллярно-маргинально-альвеолярный индекс (РМА)...

Искусство подбора персонала. Как оценить человека за час Искусство подбора персонала. Как оценить человека за час...

Этапы творческого процесса в изобразительной деятельности По мнению многих авторов, возникновение творческого начала в детской художественной практике носит такой же поэтапный характер, как и процесс творчества у мастеров искусства...

Тема 5. Анализ количественного и качественного состава персонала Персонал является одним из важнейших факторов в организации. Его состояние и эффективное использование прямо влияет на конечные результаты хозяйственной деятельности организации.

Studopedia.info - Студопедия - 2014-2025 год . (0.013 сек.) русская версия | украинская версия