Студопедія
рос | укр

Головна сторінка Випадкова сторінка


КАТЕГОРІЇ:

АвтомобіліБіологіяБудівництвоВідпочинок і туризмГеографіяДім і садЕкологіяЕкономікаЕлектронікаІноземні мовиІнформатикаІншеІсторіяКультураЛітератураМатематикаМедицинаМеталлургіяМеханікаОсвітаОхорона праціПедагогікаПолітикаПравоПсихологіяРелігіяСоціологіяСпортФізикаФілософіяФінансиХімія






Марічка перша змерзала і пускалася бігти.


Дата добавления: 2015-10-15; просмотров: 829



1) Для определенности рассмотрим случаи, когда функция y = f(x) в точке x0 имеет максимум и в этой точке существует производная. Тогда из определения максимума для любого x, принадлежащего окрестности точки x0 f(x0) > f(x).

Отсюда следует, что для любого Dx # 0 справедливо неравенство: f(x0+Dx) - f(x0) < 0. Разделим неравенство на Dx. При этом получим:

при Dx > 0:

при Dx < 0:

 

Перейдем к пределам:

 

 

Так как f”(x0) существует, то:

f’(x0+0) = f’(x0-0) = f(x0) = 0.

 

Аналогично рассматривается случай, когда x0 – точка минимума.

2) Если f' (x0) не существует или равна ¥, то точка x0 может быть точкой экстремума функции.

Например, функция y = 1х1 имеет минимум при x = 0, хотя y' (0) не существует (рис.9)

Рис. 9

 

Теорема доказана.

 

Теорема 4 (достаточное условие экстремума)

Если функция y = f(x) непрерывна в точке x0, дифференцируема в некоторой ее окрестности за исключением, может быть, самой этой точки, f’(x0) = 0 или не существует и при переходе x через точку x0 f’(x) изменяет знак, то точка x0 является точкой экстремума. Если при этом знак f’(x) меняется.

с «+» на «-», то x0 - точка максимума,

с «-» на «+», то x0 - точка минимума.

Доказательство. Пусть f’(x) при переходе x через точку x0 изменяет знак с «+» на «-», то есть f’(x)>0 при x Î (x0-d; x0)

и f’(x)<0 при x Î (x0;x0 +d), где d>0.

(рис.10).

Рис. 10

 

 

1) Пусть x Î (x0-d; x0). На отрезке [x;x0] функция y = f(x) удовлетворяет теореме Лагранжа (по условию теоремы 4). Значит, на (x;x0) найдется хотя бы одна точка c1, в которой выполняется равенство:

f(x) – f(x0) = f’(c1)×(xx0), где c1Î(x0-d;x0).

Так как f’(c1) > 0 и x-x0 < 0, то f(x) – f(x0) < 0

 

2) Пусть x Î (x0;x0 +d). На отрезке [x;x0] функция y = f(x) также удовлетворяет теореме Лагранжа. Значит на (x0;x) найдется хотя бы одна точка с2, в которой выполняется равенство:

f(x) – f(x0) = f’(c2)×(xx0), где c2 Î (x0;x0+d).

Так как f’(c2) < 0 и x-x0 > 0, то f(x) – f(x0) < 0

 

Следовательно, для любого x Î (x0-d;x0 +d) выполняется неравенство:

f(x0) > f(x).

Отсюда следует, что точка x0 является точкой максимума функции y = f(x).

Аналогично рассматривается случай, когда f’(x) при переходе x через точку x0 изменяет знак с «+» на «-». При этом точка x0 является точкой минимума функции.

Теорема доказана.

 


<== предыдущая лекция | следующая лекция ==>
Незабаром Іван побачив стрічу ворожих родів. | Любчику Іванку! Ци будемо в парі усе?
1 | 2 | 3 | <== 4 ==> | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 |
Studopedia.info - Студопедия - 2014-2024 год . (0.183 сек.) російська версія | українська версія

Генерация страницы за: 0.183 сек.
Поможем в написании
> Курсовые, контрольные, дипломные и другие работы со скидкой до 25%
3 569 лучших специалисов, готовы оказать помощь 24/7