Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Свойства распределения Фишера-Снедекора





1. Квантиль порядка F -распределения с степенями свободы и квантиль порядка F -распределения с степенями свободы связаны соотношением . Этому соотношению


эквивалентно соотношение

.

Приведенные соотношения делают ненужным табулирование F -распределения для значений аргумента . При необходимости найти значение функции распределения для следует перейти к значению аргумента, равному , и воспользоваться последним из приведенных выше соотношений.

2. Если и – независимые случайные величины, имеющие -распределение с и степенями свободы соответственно, то случайная величина имеет F -распределение с , степенями свободы.

3. Если случайная величина имеет F -распределение с параметрами , , а случайная величина имеет -распределение с степенями свободы, то справедливы следующие соотношения:

, , ~ .

4. Случайная величина , имеющая F -распределение с и степенями свободы, связана со случайной величиной , имеющая бета-распределение первого рода с параметрами , ,

соотношениями

.

Первое из этих соотношений используется для вычисления значений функции распределения Фишера-Снедекора с помощью таблиц неполной бета-функции.

Если – четное число, то F -распределение с параметрами связано с биноминальным распределением с числом испытаний и вероятностью успеха соотношением

,

где – случайная величина, распределенная по биноминальному закону с параметрами .

5. F -распределение сводится к бета-распределению второго рода (распределение VI – по классификации Пирсона).

6. При возрастании и F -распределение приближается к нормальному распределению.

7. Если – выборка объема из нормальной генеральной совокупности с параметрами , а – выборка объема совокупности с параметрами ,

то статистика: .

имеет F -распределение Фишера-Снедекора с и степенями свободы. (Здесь и – выборочные оценки математических ожиданий и соответственно).







Дата добавления: 2014-12-06; просмотров: 1393. Нарушение авторских прав; Мы поможем в написании вашей работы!




Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...

Условия, необходимые для появления жизни История жизни и история Земли неотделимы друг от друга, так как именно в процессах развития нашей планеты как космического тела закладывались определенные физические и химические условия, необходимые для появления и развития жизни...

Метод архитекторов Этот метод является наиболее часто используемым и может применяться в трех модификациях: способ с двумя точками схода, способ с одной точкой схода, способ вертикальной плоскости и опущенного плана...

Примеры задач для самостоятельного решения. 1.Спрос и предложение на обеды в студенческой столовой описываются уравнениями: QD = 2400 – 100P; QS = 1000 + 250P   1.Спрос и предложение на обеды в студенческой столовой описываются уравнениями: QD = 2400 – 100P; QS = 1000 + 250P...

Демографияда "Демографиялық жарылыс" дегеніміз не? Демография (грекше демос — халық) — халықтың құрылымын...

Субъективные признаки контрабанды огнестрельного оружия или его основных частей   Переходя к рассмотрению субъективной стороны контрабанды, остановимся на теоретическом понятии субъективной стороны состава преступления...

ЛЕЧЕБНО-ПРОФИЛАКТИЧЕСКОЙ ПОМОЩИ НАСЕЛЕНИЮ В УСЛОВИЯХ ОМС 001. Основными путями развития поликлинической помощи взрослому населению в новых экономических условиях являются все...

Studopedia.info - Студопедия - 2014-2026 год . (0.011 сек.) русская версия | украинская версия