Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Свойства распределения Фишера-Снедекора





1. Квантиль порядка F -распределения с степенями свободы и квантиль порядка F -распределения с степенями свободы связаны соотношением . Этому соотношению


эквивалентно соотношение

.

Приведенные соотношения делают ненужным табулирование F -распределения для значений аргумента . При необходимости найти значение функции распределения для следует перейти к значению аргумента, равному , и воспользоваться последним из приведенных выше соотношений.

2. Если и – независимые случайные величины, имеющие -распределение с и степенями свободы соответственно, то случайная величина имеет F -распределение с , степенями свободы.

3. Если случайная величина имеет F -распределение с параметрами , , а случайная величина имеет -распределение с степенями свободы, то справедливы следующие соотношения:

, , ~ .

4. Случайная величина , имеющая F -распределение с и степенями свободы, связана со случайной величиной , имеющая бета-распределение первого рода с параметрами , ,

соотношениями

.

Первое из этих соотношений используется для вычисления значений функции распределения Фишера-Снедекора с помощью таблиц неполной бета-функции.

Если – четное число, то F -распределение с параметрами связано с биноминальным распределением с числом испытаний и вероятностью успеха соотношением

,

где – случайная величина, распределенная по биноминальному закону с параметрами .

5. F -распределение сводится к бета-распределению второго рода (распределение VI – по классификации Пирсона).

6. При возрастании и F -распределение приближается к нормальному распределению.

7. Если – выборка объема из нормальной генеральной совокупности с параметрами , а – выборка объема совокупности с параметрами ,

то статистика: .

имеет F -распределение Фишера-Снедекора с и степенями свободы. (Здесь и – выборочные оценки математических ожиданий и соответственно).







Дата добавления: 2014-12-06; просмотров: 1393. Нарушение авторских прав; Мы поможем в написании вашей работы!




Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...


Теория усилителей. Схема Основная масса современных аналоговых и аналого-цифровых электронных устройств выполняется на специализированных микросхемах...

Травматическая окклюзия и ее клинические признаки При пародонтите и парадонтозе резистентность тканей пародонта падает...

Подкожное введение сывороток по методу Безредки. С целью предупреждения развития анафилактического шока и других аллергических реак­ций при введении иммунных сывороток используют метод Безредки для определения реакции больного на введение сыворотки...

Принципы и методы управления в таможенных органах Под принципами управления понимаются идеи, правила, основные положения и нормы поведения, которыми руководствуются общие, частные и организационно-технологические принципы...

КОНСТРУКЦИЯ КОЛЕСНОЙ ПАРЫ ВАГОНА Тип колёсной пары определяется типом оси и диаметром колес. Согласно ГОСТ 4835-2006* устанавливаются типы колесных пар для грузовых вагонов с осями РУ1Ш и РВ2Ш и колесами диаметром по кругу катания 957 мм. Номинальный диаметр колеса – 950 мм...

Философские школы эпохи эллинизма (неоплатонизм, эпикуреизм, стоицизм, скептицизм). Эпоха эллинизма со времени походов Александра Македонского, в результате которых была образована гигантская империя от Индии на востоке до Греции и Македонии на западе...

Демографияда "Демографиялық жарылыс" дегеніміз не? Демография (грекше демос — халық) — халықтың құрылымын...

Studopedia.info - Студопедия - 2014-2026 год . (0.01 сек.) русская версия | украинская версия