Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Свойства - распределения





1. Если – независимые стандартные нормальные случайные величины, то случайная величина имеет -распределение с степенями свободы.

2. -распределение с степенями свободы совпадает с гамма-распределением с параметром масштаба и параметром формы .

3. Случайная величина , имеющая - распределение с степенями свободы, и случайная величина , имеющая гамма-распределение с параметром масштаба и параметром формы , связаны соотношением ~ .

4. Сумма независимых случайных величин , имеющих -распределение с степенями свободы соответственно имеет -распределение с степенями свободы.

5. Независимые случайные величины и , имеющие -распределение с и степенями свободы, соответственно связаны со случайной величиной , имеющей -распределение Фишера-Снедекора с и степенями свободы, соотношением ~ .

6. Случайная величина имеет такое же распределение, как и случайная величина , то есть ~ .

7. Случайная величина , имеющая -распределение с степенями свободы, связана со случайной величиной , имеющей распределение Стьюдента с степенями свободы, и независимой от стандартной нормальной случайной величиной следующим соотношением ~ .

8. При четном случайная величина связана со случайной величиной , распределенной по закону Пуассона с параметром , соотношением .

Этому соотношению эквивалентны соотношения

, , целое;

, .

Здесь – интеграл вероятностей -распределения; – функция распределения Пуассона с параметром ; .

9. При случайная величина сходится к стандартному нормальному распределению. Однако эта сходимость довольно медленная. Гораздо быстрее сходится к стандартному нормальному распределению случайная величина .

Распределение нашло широкое применение при проверке статистических гипотез о виде распределения случайной величины , а также в теории надежности – при определении доверительных границ [9].

Распределение хи-квадрат может быть определено как сумма квадратов -независимых случайных величин с нулевым средним значением и единичным средним квадратическим отклонением. На рис. 7 показаны формы кривых распределения.

Значения квантилей -распределения представлены в приложении 3, заимствованные из.

Пример. При испытаниях системы электроавтоматики распределение отказов по интервалам наработки представлены в табл. 8. Определить по критерию согласия принадлежность совокупности данного распределения отказов экспоненциальному закону с параметром и достоверностью .

Таблица 3

Интервал наработок до отказа, ч 5-10 10-20 20-30 30-40 40-45 45-50
Число отказов в интервале            

Для расчета квантили -распределения составим дополнительную табл.4.

Здесь – длина интервала.

Так как предполагаемый теоретический закон распределения наработки до отказа экспоненциальный, он имеет один параметр. Тогда число степеней свободы равно разности между числом интервалов и числом параметров распределения, то есть .

Таблица 4

Интервал наработок до отказа, ч 5-10 10-20 20-30 30-40 40-45 45-50 Примечание
Число отказов в интервале              
Функция отказов (теоретическая) 0, 98 0, 999 0, 999 0, 999 0, 98 0, 98  
9, 8 7, 999 5, 994 5, 994 4, 9 4, 9  
0, 004 0, 000001 0, 000006 0, 000006 0, 002 0, 002 Сумма 0, 008

 

При достоверности и числе степеней свободы по таблице приложения 3 находим квантиль: .

Полученное значение .

Это свидетельствует о том, что гипотеза о принадлежности статистического распределения теоретическому (экспоненциальному) подтверждается с вероятностью 0, 99.

Ответ: статистические данные подтверждают экспоненциальный закон распределения наработки до отказа.







Дата добавления: 2014-12-06; просмотров: 910. Нарушение авторских прав; Мы поможем в написании вашей работы!




Шрифт зодчего Шрифт зодчего состоит из прописных (заглавных), строчных букв и цифр...


Картограммы и картодиаграммы Картограммы и картодиаграммы применяются для изображения географической характеристики изучаемых явлений...


Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...

Значення творчості Г.Сковороди для розвитку української культури Важливий внесок в історію всієї духовної культури українського народу та її барокової літературно-філософської традиції зробив, зокрема, Григорій Савич Сковорода (1722—1794 pp...

Постинъекционные осложнения, оказать необходимую помощь пациенту I.ОСЛОЖНЕНИЕ: Инфильтрат (уплотнение). II.ПРИЗНАКИ ОСЛОЖНЕНИЯ: Уплотнение...

Приготовление дезинфицирующего рабочего раствора хлорамина Задача: рассчитать необходимое количество порошка хлорамина для приготовления 5-ти литров 3% раствора...

Принципы, критерии и методы оценки и аттестации персонала   Аттестация персонала является одной их важнейших функций управления персоналом...

Пункты решения командира взвода на организацию боя. уяснение полученной задачи; оценка обстановки; принятие решения; проведение рекогносцировки; отдача боевого приказа; организация взаимодействия...

Что такое пропорции? Это соотношение частей целого между собой. Что может являться частями в образе или в луке...

Studopedia.info - Студопедия - 2014-2026 год . (0.013 сек.) русская версия | украинская версия