Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Свойства - распределения





1. Если – независимые стандартные нормальные случайные величины, то случайная величина имеет -распределение с степенями свободы.

2. -распределение с степенями свободы совпадает с гамма-распределением с параметром масштаба и параметром формы .

3. Случайная величина , имеющая - распределение с степенями свободы, и случайная величина , имеющая гамма-распределение с параметром масштаба и параметром формы , связаны соотношением ~ .

4. Сумма независимых случайных величин , имеющих -распределение с степенями свободы соответственно имеет -распределение с степенями свободы.

5. Независимые случайные величины и , имеющие -распределение с и степенями свободы, соответственно связаны со случайной величиной , имеющей -распределение Фишера-Снедекора с и степенями свободы, соотношением ~ .

6. Случайная величина имеет такое же распределение, как и случайная величина , то есть ~ .

7. Случайная величина , имеющая -распределение с степенями свободы, связана со случайной величиной , имеющей распределение Стьюдента с степенями свободы, и независимой от стандартной нормальной случайной величиной следующим соотношением ~ .

8. При четном случайная величина связана со случайной величиной , распределенной по закону Пуассона с параметром , соотношением .

Этому соотношению эквивалентны соотношения

, , целое;

, .

Здесь – интеграл вероятностей -распределения; – функция распределения Пуассона с параметром ; .

9. При случайная величина сходится к стандартному нормальному распределению. Однако эта сходимость довольно медленная. Гораздо быстрее сходится к стандартному нормальному распределению случайная величина .

Распределение нашло широкое применение при проверке статистических гипотез о виде распределения случайной величины , а также в теории надежности – при определении доверительных границ [9].

Распределение хи-квадрат может быть определено как сумма квадратов -независимых случайных величин с нулевым средним значением и единичным средним квадратическим отклонением. На рис. 7 показаны формы кривых распределения.

Значения квантилей -распределения представлены в приложении 3, заимствованные из.

Пример. При испытаниях системы электроавтоматики распределение отказов по интервалам наработки представлены в табл. 8. Определить по критерию согласия принадлежность совокупности данного распределения отказов экспоненциальному закону с параметром и достоверностью .

Таблица 3

Интервал наработок до отказа, ч 5-10 10-20 20-30 30-40 40-45 45-50
Число отказов в интервале            

Для расчета квантили -распределения составим дополнительную табл.4.

Здесь – длина интервала.

Так как предполагаемый теоретический закон распределения наработки до отказа экспоненциальный, он имеет один параметр. Тогда число степеней свободы равно разности между числом интервалов и числом параметров распределения, то есть .

Таблица 4

Интервал наработок до отказа, ч 5-10 10-20 20-30 30-40 40-45 45-50 Примечание
Число отказов в интервале              
Функция отказов (теоретическая) 0, 98 0, 999 0, 999 0, 999 0, 98 0, 98  
9, 8 7, 999 5, 994 5, 994 4, 9 4, 9  
0, 004 0, 000001 0, 000006 0, 000006 0, 002 0, 002 Сумма 0, 008

 

При достоверности и числе степеней свободы по таблице приложения 3 находим квантиль: .

Полученное значение .

Это свидетельствует о том, что гипотеза о принадлежности статистического распределения теоретическому (экспоненциальному) подтверждается с вероятностью 0, 99.

Ответ: статистические данные подтверждают экспоненциальный закон распределения наработки до отказа.







Дата добавления: 2014-12-06; просмотров: 910. Нарушение авторских прав; Мы поможем в написании вашей работы!




Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...


Теория усилителей. Схема Основная масса современных аналоговых и аналого-цифровых электронных устройств выполняется на специализированных микросхемах...

ОЧАГОВЫЕ ТЕНИ В ЛЕГКОМ Очаговыми легочными инфильтратами проявляют себя различные по этиологии заболевания, в основе которых лежит бронхо-нодулярный процесс, который при рентгенологическом исследовании дает очагового характера тень, размерами не более 1 см в диаметре...

Примеры решения типовых задач. Пример 1.Степень диссоциации уксусной кислоты в 0,1 М растворе равна 1,32∙10-2   Пример 1.Степень диссоциации уксусной кислоты в 0,1 М растворе равна 1,32∙10-2. Найдите константу диссоциации кислоты и значение рК. Решение. Подставим данные задачи в уравнение закона разбавления К = a2См/(1 –a) =...

Экспертная оценка как метод психологического исследования Экспертная оценка – диагностический метод измерения, с помощью которого качественные особенности психических явлений получают свое числовое выражение в форме количественных оценок...

Потенциометрия. Потенциометрическое определение рН растворов Потенциометрия - это электрохимический метод иссле­дования и анализа веществ, основанный на зависимости равновесного электродного потенциала Е от активности (концентрации) определяемого вещества в исследуемом рас­творе...

Гальванического элемента При контакте двух любых фаз на границе их раздела возникает двойной электрический слой (ДЭС), состоящий из равных по величине, но противоположных по знаку электрических зарядов...

Сущность, виды и функции маркетинга персонала Перснал-маркетинг является новым понятием. В мировой практике маркетинга и управления персоналом он выделился в отдельное направление лишь в начале 90-х гг.XX века...

Studopedia.info - Студопедия - 2014-2025 год . (0.01 сек.) русская версия | украинская версия