Свойства нормированного распределения Эрланга
1. Нормированное распределение Эрланга порядка описывает распределение среднего арифметического: , где независимых случайных величин, каждая из которых подчиняется показательному закону с одним и тем же параметром . 2. Случайная величина , имеющая нормированное распределение Эрланга порядка , связана со случайной величиной , распределенной по закону Эрланга -го порядка соотношением . 3. Нормированное распределение Эрланга порядка описывает распределение суммы независимых случайных величин , каждая из которых распределена по показательному закону с одним и тем же параметром .
Рис.7. Плотность вероятности нормированного распределения Эрланга
4. Сумма независимых случайных величин, имеющих нормированное распределение Эрланга порядка с одним и тем же параметром масштаба имеет нормированное распределение Эрланга порядка с тем же самым параметром масштаба . 5. При нормированное распределение Эрланга совпадает с показательным распределением. Примечание. При увеличении порядка математическое ожидание этого распределения остается неизменным, а его дисперсия стремится к нулю. Следовательно, случайная величина , имеющая нормированное распределение Эрланга, «становится все менее и менее случайной» и, в конце концов, вырождается в постоянную . Это свойство нормированного распределения Эрланга очень удобно в практических приложениях. Оно позволяет, задаваясь различными значениями , получать различную «степень случайности» случайной величины – от «сильной случайности», при до полного отсутствия случайности, при . При этом порядок нормированного распределения Эрланга можно рассматривать как своеобразную «меру случайности» случайной величины , используемой в качестве вероятностной модели какого-либо случайного параметра исследуемого объекта (например, времени прохождения сообщения через систему связи, времени безотказной работы технического устройства и т.п.).
|