Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Свойства нормированного распределения Эрланга





1. Нормированное распределение Эрланга порядка описывает распределение среднего арифметического: ,

где независимых случайных величин, каждая из которых подчиняется показательному закону с одним и тем же параметром .

2. Случайная величина , имеющая нормированное распределение Эрланга порядка , связана со случайной величиной , распределенной по закону Эрланга -го порядка соотношением .

3. Нормированное распределение Эрланга порядка описывает распределение суммы независимых случайных величин , каждая из которых распределена по показательному закону с одним и тем же параметром .

 

Рис.7. Плотность вероятности нормированного распределения Эрланга

 

4. Сумма независимых случайных величин, имеющих нормированное распределение Эрланга порядка с одним и тем же параметром масштаба имеет нормированное распределение Эрланга порядка с тем же самым параметром масштаба .

5. При нормированное распределение Эрланга совпадает с показательным распределением.

Примечание. При увеличении порядка математическое ожидание этого распределения остается неизменным, а его дисперсия стремится к нулю. Следовательно, случайная величина , имеющая нормированное распределение Эрланга, «становится все менее и менее случайной» и, в конце концов, вырождается в постоянную . Это свойство нормированного распределения Эрланга очень удобно в практических приложениях. Оно позволяет, задаваясь различными значениями , получать различную «степень случайности» случайной величины – от «сильной случайности», при до полного отсутствия случайности, при . При этом порядок нормированного распределения Эрланга можно рассматривать как своеобразную «меру случайности» случайной величины , используемой в качестве вероятностной модели какого-либо случайного параметра исследуемого объекта (например, времени прохождения сообщения через систему связи, времени безотказной работы технического устройства и т.п.).







Дата добавления: 2014-12-06; просмотров: 2343. Нарушение авторских прав; Мы поможем в написании вашей работы!




Картограммы и картодиаграммы Картограммы и картодиаграммы применяются для изображения географической характеристики изучаемых явлений...


Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...

Пункты решения командира взвода на организацию боя. уяснение полученной задачи; оценка обстановки; принятие решения; проведение рекогносцировки; отдача боевого приказа; организация взаимодействия...

Что такое пропорции? Это соотношение частей целого между собой. Что может являться частями в образе или в луке...

Растягивание костей и хрящей. Данные способы применимы в случае закрытых зон роста. Врачи-хирурги выяснили...

Классификация холодных блюд и закусок. Урок №2 Тема: Холодные блюда и закуски. Значение холодных блюд и закусок. Классификация холодных блюд и закусок. Кулинарная обработка продуктов...

ТЕРМОДИНАМИКА БИОЛОГИЧЕСКИХ СИСТЕМ. 1. Особенности термодинамического метода изучения биологических систем. Основные понятия термодинамики. Термодинамикой называется раздел физики...

Травматическая окклюзия и ее клинические признаки При пародонтите и парадонтозе резистентность тканей пародонта падает...

Studopedia.info - Студопедия - 2014-2026 год . (0.011 сек.) русская версия | украинская версия