Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Плотность совместного распределения вероятностей непрерывной двумерной случайной величины (двумерная плотность вероятности)





 

Двумерная случайная величина задавалась с помощью функции распределения. Непрерывную двумерную величину можно также задать, пользуясь плотностью распределения. Здесь и далее будем предполагать, что функция распределения всюду непрерывна и имеет всюду (за исключением, быть может, конечного числа кривых) непрерывную частную производную второго порядка.

Плотностью совместного распределения вероятностей двумерной непрерывной случайной величины называют вторую смешанную частную производную от функции распределения:

.

Геометрически эту функцию можно истолковать как поверхность, которую называют поверхностью распределения.

Пример. Найти плотность совместного распределения системы случайных величин по известной функции распределения

.

Решение. По определению плотности совместного распределения,

.

Найдем частную производную по от функции распределения:

Найдем от полученного результата частную производную по :

.

Искомая плотность совместного распределения равна

.

 

Рис. 5. Графическое представление вероятности попадания случайной точки в прямоугольник

 

Двумерная плотность вероятности имеет следующий вероятностный смысл: вероятность попадания случайной точки в прямоугольник ABCD (рис. 5) равна

 

 

Рис.6. Графическое представление двумерной плотности вероятности

 

Заметим, что для того, чтобы вычислить вероятность попадания случайной точки в область (рис. 17), достаточно найти двойной интеграл по области от функции . .

Двумерная плотность вероятности обладает следующими свойствами:

Свойство 1. Двумерная плотность вероятности неотрицательна: .

Свойство 2. Двойной несобственный интеграл с бесконечными пределами от двумерной плотности равен 1: .







Дата добавления: 2014-12-06; просмотров: 3446. Нарушение авторских прав; Мы поможем в написании вашей работы!




Картограммы и картодиаграммы Картограммы и картодиаграммы применяются для изображения географической характеристики изучаемых явлений...


Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...

Типы конфликтных личностей (Дж. Скотт) Дж. Г. Скотт опирается на типологию Р. М. Брансом, но дополняет её. Они убеждены в своей абсолютной правоте и хотят, чтобы...

Гносеологический оптимизм, скептицизм, агностицизм.разновидности агностицизма Позицию Агностицизм защищает и критический реализм. Один из главных представителей этого направления...

Функциональные обязанности медсестры отделения реанимации · Медсестра отделения реанимации обязана осуществлять лечебно-профилактический и гигиенический уход за пациентами...

Образование соседних чисел Фрагмент: Программная задача: показать образование числа 4 и числа 3 друг из друга...

Шрифт зодчего Шрифт зодчего состоит из прописных (заглавных), строчных букв и цифр...

Краткая психологическая характеристика возрастных периодов.Первый критический период развития ребенка — период новорожденности Психоаналитики говорят, что это первая травма, которую переживает ребенок, и она настолько сильна, что вся последую­щая жизнь проходит под знаком этой травмы...

Studopedia.info - Студопедия - 2014-2025 год . (0.011 сек.) русская версия | украинская версия