Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Числовые характеристики системы двух случайных величин





Для описания системы двух случайных величин, кроме математических ожиданий и дисперсий составляющих, используют и другие характеристики; к их числу относятся корреляционный момент и коэффициент корреляции [3].

Корреляционным моментом случайных величин и называют математическое ожидание произведения отклонений этих величин:

.

Для вычисления корреляционного момента дискретных величин используют формулу: ,

а для непрерывных величин формулу

.

Корреляционный момент служит для характеристики связи между величинами и . Как будет показано ниже, корреляционный момент равен нулю, если и независимы; следовательно, если корреляционный момент не равен нулю, то и – зависимые случайные величины.

Замечание 1. Учитывая, что отклонения есть центрированные случайные величины, корреляционный момент можно определить как математическое ожидание произведения центрированных случайных величин: .

Замечание 2. Легко убедиться, что корреляционный момент можно записать в виде .

Теорема 1. Корреляционный момент двух независимых случайных величин и равен нулю.

Коэффициентом корреляции случайных величин и называют отношение корреляционного момента к произведению средних квадратических отклонений этих величин: .

Так как размерность равна произведению размерностей величин и , имеет размерность величины , имеет размерность величины , то – безразмерная величина. Таким образом, величина коэффициента корреляции не зависит от выбора единиц измерения случайных величин. В этом состоит преимущество коэффициента корреляции перед корреляционным моментом.

Теорема 2. Абсолютная величина корреляционного момента двух случайных величин и не превышает среднего геометрического их дисперсий:

.

Теорема 3. Абсолютная величина коэффициента корреляции не превышает единицы: .







Дата добавления: 2014-12-06; просмотров: 1687. Нарушение авторских прав; Мы поможем в написании вашей работы!




Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...


Теория усилителей. Схема Основная масса современных аналоговых и аналого-цифровых электронных устройств выполняется на специализированных микросхемах...

Гальванического элемента При контакте двух любых фаз на границе их раздела возникает двойной электрический слой (ДЭС), состоящий из равных по величине, но противоположных по знаку электрических зарядов...

Сущность, виды и функции маркетинга персонала Перснал-маркетинг является новым понятием. В мировой практике маркетинга и управления персоналом он выделился в отдельное направление лишь в начале 90-х гг.XX века...

Разработка товарной и ценовой стратегии фирмы на российском рынке хлебопродуктов В начале 1994 г. английская фирма МОНО совместно с бельгийской ПЮРАТОС приняла решение о начале совместного проекта на российском рынке. Эти фирмы ведут деятельность в сопредельных сферах производства хлебопродуктов. МОНО – крупнейший в Великобритании...

Этапы и алгоритм решения педагогической задачи Технология решения педагогической задачи, так же как и любая другая педагогическая технология должна соответствовать критериям концептуальности, системности, эффективности и воспроизводимости...

Понятие и структура педагогической техники Педагогическая техника представляет собой важнейший инструмент педагогической технологии, поскольку обеспечивает учителю и воспитателю возможность добиться гармонии между содержанием профессиональной деятельности и ее внешним проявлением...

Репродуктивное здоровье, как составляющая часть здоровья человека и общества   Репродуктивное здоровье – это состояние полного физического, умственного и социального благополучия при отсутствии заболеваний репродуктивной системы на всех этапах жизни человека...

Studopedia.info - Студопедия - 2014-2025 год . (0.01 сек.) русская версия | украинская версия