Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Дискретные случайные величины





Пусть – дискретная случайная величина, которая в результате опытов приняла возможные значения . Допустим, что вид закона распределения величины задан, но неизвестен параметр , которым определяется этот закон; требуется найти его точечную оценку [4].

Обозначим вероятность того, что в результате испытания величина примет значение через .

Функцией правдоподобия дискретной случайной величины называют функцию аргумента :

. (15)

Оценкой наибольшего правдоподобия параметра называют такое его значение , при котором функция правдоподобия достигает максимума.

Функции и достигают максимума при одном и том же значении , поэтому вместо отыскания максимума функции ищут, что удобнее, максимум функции .

Логарифмической функцией правдоподобия называют функцию .

Точку максимума функции аргумента можно искать, например, так:

1. Найти производную .

2. Приравнять производную нулю и найти критическую точку – корень полученного уравнения (его называют уравнением правдоподобия).

3. Найти вторую производную ; если вторая производная при отрицательная, то – точка максимума.

Найденную точку максимума принимают в качестве оценки наибольшего правдоподобия параметра .

Для получения последовательности возможных значений дискретной случайной величины, зная ее закон распределения, то есть для разыгрывания дискретной случайной величины, в приложении 9 приведены значения равномерно распределенных чисел.







Дата добавления: 2014-12-06; просмотров: 2447. Нарушение авторских прав; Мы поможем в написании вашей работы!




Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...

ОЧАГОВЫЕ ТЕНИ В ЛЕГКОМ Очаговыми легочными инфильтратами проявляют себя различные по этиологии заболевания, в основе которых лежит бронхо-нодулярный процесс, который при рентгенологическом исследовании дает очагового характера тень, размерами не более 1 см в диаметре...

Примеры решения типовых задач. Пример 1.Степень диссоциации уксусной кислоты в 0,1 М растворе равна 1,32∙10-2   Пример 1.Степень диссоциации уксусной кислоты в 0,1 М растворе равна 1,32∙10-2. Найдите константу диссоциации кислоты и значение рК. Решение. Подставим данные задачи в уравнение закона разбавления К = a2См/(1 –a) =...

Экспертная оценка как метод психологического исследования Экспертная оценка – диагностический метод измерения, с помощью которого качественные особенности психических явлений получают свое числовое выражение в форме количественных оценок...

Классификация и основные элементы конструкций теплового оборудования Многообразие способов тепловой обработки продуктов предопределяет широкую номенклатуру тепловых аппаратов...

Именные части речи, их общие и отличительные признаки Именные части речи в русском языке — это имя существительное, имя прилагательное, имя числительное, местоимение...

Интуитивное мышление Мышление — это пси­хический процесс, обеспечивающий познание сущности предме­тов и явлений и самого субъекта...

Studopedia.info - Студопедия - 2014-2025 год . (0.011 сек.) русская версия | украинская версия