Метод сумм для вычисления выборочной средней и дисперсии
Пусть выборка задана в виде распределения равноотстоящих вариант и соответствующих им частот. В этом случае выборочные среднюю и дисперсию можно вычислить по формулам: , . (26) При использовании метода сумм условные моменты первого и второго порядков находят по формулам: , , (27) где , , . Таким образом, в конечном счете, надо вычислить числа , , , . Пример. Найти методом сумм выборочную среднюю и выборочную дисперсию по заданному распределению выборки объема : . Решение. Составим расчетную табл. 9.1, для этого: 1) запишем варианты в первый столбец; 2) запишем частоты во второй столбец; сумму частот (100) поместим в нижнюю клетку столбца; 3) в качестве ложного нуля выберем варианту (65), которая имеет наибольшую частоту (в качестве можно взять любую варианту, расположенную примерно в середине столбца); в клетках строки, содержащей ложный нуль, запишем нули; в четвертом столбце над и под уже помещенным нулем запишем еще по одному нулю; 4) в оставшихся незаполненными над нулем клетках третьего столбца (исключая самую верхнюю) запишем последовательно накопленные частоты: 3; 3+4=7; 7+8=15; 15+14=29; 29+20=49; сложив все накопленные частоты, получим число , которое поместим в верхнюю клетку третьего столбца. В оставшихся незаполненными под нулем клетках третьего столбца (исключая самую нижнюю) запишем последовательно накопленные частоты: 2; 2+3=5; 5+6=11; 11+5=16; сложив все накопленные частоты, получим число , которое поместим в нижнюю клетку третьего столбца; 5) аналогично заполняется четвертый столбец, причем суммируют частоты третьего столбца; сложив все накопленные частоты, расположенные над нулем, получим число , которое поместим в верхнюю клетку четвертого столбца; сумма накопленных частот, расположенных под нулем, равна числу , которое поместим в нижнюю клетку четвертого столбца. В итоге получим расчетную табл. 2. Таблица 2
Найдем , , : ; ; . Найдем условные моменты первого и второго порядков: , . Вычислим искомые выборочную среднюю и выборочную дисперсию, учитывая, что шаг (разность между двумя соседними вариантами) и ложный нуль : ; .
|