Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Непрерывные случайные величины





Пусть – непрерывная случайная величина, которая в результате испытаний приняла значения . Допустим, что вид плоскости распределения – функции – задан, но неизвестен параметр , которым определяется эта функция.

Функцией правдоподобия непрерывной случайной величины называют функцию аргумента :

. (16)

Оценку наибольшего правдоподобия неизвестного параметра распределения случайной величины ищут так же, как в случае дискретной случайной величины.

Если плотность распределения непрерывной случайной величины определяется двумя неизвестными параметрами и , то функция правдоподобия есть функция двух независимых аргументов и :

.

Далее находят логарифмическую функцию правдоподобия и для отыскания ее максимума составляют и решают систему

(17)

Пример. Найти методом наибольшего правдоподобия точечную оценку неизвестного параметра (вероятность появления события в одном испытании) биноминального распределения ,

где – число появлений события в -м опыте;

– количество испытаний в одном опыте;

– число опытов.

Решение. Составим функцию правдоподобия: .


Учитывая, что и , получим

или .

Напишем логарифмическую функцию правдоподобия:

.

Найдем первую производную по :

.

Приравняв первую производную нулю и решив полученное уравнение, получим критическую точку .

Найдем вторую производную по .

Легко убедиться, что при вторая производная отрицательна; следовательно, эта точка есть точка максимума и ее надо принять в качестве оценки наибольшего правдоподобия неизвестной вероятности биноминального распределения: .

Очевидно, что если появлений события наблюдалось в опытах, то

.

Пример. Найти методом наибольшего правдоподобия по выборке точечную оценку неизвестного параметра показательного распределения, плотность которого .

Решение. Составим функцию правдоподобия

,

учитывая, что и, следовательно, :

.

Найдем логарифмическую функцию правдоподобия:

.

Найдем первую производную по : .

Запишем уравнение правдоподобия, для чего приравняем первую производную нулю: . Найдем относительную точку, для чего решим полученное уравнение относительно : .

Найдем вторую производную по : .

Легко видеть, что при вторая производная отрицательна, следовательно, эта точка есть точка максимума и, значит, в качестве оценки наибольшего правдоподобия надо принять величину, обратную выборочной средней: .







Дата добавления: 2014-12-06; просмотров: 1539. Нарушение авторских прав; Мы поможем в написании вашей работы!




Картограммы и картодиаграммы Картограммы и картодиаграммы применяются для изображения географической характеристики изучаемых явлений...


Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...

Классификация и основные элементы конструкций теплового оборудования Многообразие способов тепловой обработки продуктов предопределяет широкую номенклатуру тепловых аппаратов...

Именные части речи, их общие и отличительные признаки Именные части речи в русском языке — это имя существительное, имя прилагательное, имя числительное, местоимение...

Интуитивное мышление Мышление — это пси­хический процесс, обеспечивающий познание сущности предме­тов и явлений и самого субъекта...

Менадиона натрия бисульфит (Викасол) Групповая принадлежность •Синтетический аналог витамина K, жирорастворимый, коагулянт...

Разновидности сальников для насосов и правильный уход за ними   Сальники, используемые в насосном оборудовании, служат для герметизации пространства образованного кожухом и рабочим валом, выходящим через корпус наружу...

Дренирование желчных протоков Показаниями к дренированию желчных протоков являются декомпрессия на фоне внутрипротоковой гипертензии, интраоперационная холангиография, контроль за динамикой восстановления пассажа желчи в 12-перстную кишку...

Studopedia.info - Студопедия - 2014-2025 год . (0.013 сек.) русская версия | украинская версия