Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Метод произведений вычисления выборочной средней и дисперсии





Равноотстоящие варианты

Пусть выборка задана в виде распределения равноотстоящих вариант и соответствующих им частот. В этом случае удобно находить выборочную среднюю и дисперсию методом произведений по формулам

, ,

где – шаг (разность между двумя соседними вариантами); – ложный нуль (варианта, которая расположена примерно в середине вариационного ряда); – условная варианта; – условный момент первого порядка; – условный момент второго порядка.

Пример. Найти методом произведений выборочную среднюю и выборочную дисперсию по заданному распределению выборки объема :

.

Решение. Составим расчетную табл. 8.1; для этого:

1) запишем варианты в первый столбец;

2) запишем частоты во второй столбец; сумму частот (100) поместим в нижнюю клетку столбца;

3) в качестве ложного нуля выберем варианту (17), которая имеет наибольшую частоту (в качестве можно взять любую варианту, расположенную примерно в середине столбца); в клетке третьего столбца, которая принадлежит строке, содержащей ложный нуль, пишем 0; над нулем последовательно записываем -1, -2, -3 а под нулем 1, 2;

4) произведения частот на условные варианты запишем в четвертый столбец; отдельно находим сумму (А1=--74) отрицательных чисел и отдельно сумму (А2=14) положительных чисел; сложив эти числа, их сумму (-60) помещаем в нижнюю клетку четвертого столбца;

5) произведения частот на квадраты условных вариант, то есть , запишем в пятый столбец (удобнее перемножить числа каждой строки третьего и четвертого столбцов; ); сумму чисел столбца (152) помещаем в нижнюю клетку пятого столбца;

6) произведения частот на квадраты условных вариант, увеличенных на единицу, то есть , запишем в шестой контрольный столбец; сумму чисел столбца (132) помещаем в нижнюю клетку шестого столбца.

В итоге получим расчетную табл. 8.1.

Для контроля вычислений пользуются тождеством

.

Контроль:

, .

Совпадение контрольных сумм свидетельствует о правильности вычислений.

Вычислим условные моменты первого и второго порядков:

; .

Найдем шаг (разность между любыми двумя соседними вариантами): .

Вычислим искомые выборочные среднюю и дисперсию, учитывая, что ложный нуль (варианта, которая имеет наибольшую частоту) :

;

.


Таблица 1

           
    -3 -12    
    -2 -32    
    -1 -30    
      А1=-74    
           
           
      А2=14    
   

Неравноотстоящие варианты

Если первоначальные варианты не являются равноотстоящими, то интервал, в котором заключены все варианты выборки, делят на несколько равных, длины , частичных интервалов (каждый частичный интервал должен содержать не менее 8-10 вариант). Затем находят середины частичных интервалов, которые и образуют последовательность равноотстоящих вариант. В качестве частоты каждой середины интервала принимают сумму частот вариант, которые попали в соответствующий частичный интервал.

При вычислении выборочной дисперсии для уменьшения ошибки, вызванной группировкой (особенно при малом числе интервалов), делают поправку Шеппарда, а именно вычитают из вычисленной дисперсии квадрата длины частичного интервала.

Таким образом, с учетом поправки Шеппарда дисперсию вычисляют по формуле .

Пример. Найти методом произведений выборочную среднюю и выборочную дисперсию по заданному распределению выборки объема :

.

Решение. Разобьем интервал 2-26 на следующие четыре частичных интервала длины .приняв середины частичных интервалов в качестве новых вариант , получим равноотстоящие варианты: , , , .

В качестве частоты варианты примем сумму частот вариант, попавших в первый интервал: .

Вычислим аналогично частоты остальных вариант, получим распределение равноотстоящих вариант:

Пользуясь методом произведений, найдем , .

Принимая во внимание, что число частичных интервалов (4) мало, учтем поправку Шеппарда: .

 







Дата добавления: 2014-12-06; просмотров: 7251. Нарушение авторских прав; Мы поможем в написании вашей работы!




Шрифт зодчего Шрифт зодчего состоит из прописных (заглавных), строчных букв и цифр...


Картограммы и картодиаграммы Картограммы и картодиаграммы применяются для изображения географической характеристики изучаемых явлений...


Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...

Хронометражно-табличная методика определения суточного расхода энергии студента Цель: познакомиться с хронометражно-табличным методом опреде­ления суточного расхода энергии...

ОЧАГОВЫЕ ТЕНИ В ЛЕГКОМ Очаговыми легочными инфильтратами проявляют себя различные по этиологии заболевания, в основе которых лежит бронхо-нодулярный процесс, который при рентгенологическом исследовании дает очагового характера тень, размерами не более 1 см в диаметре...

Примеры решения типовых задач. Пример 1.Степень диссоциации уксусной кислоты в 0,1 М растворе равна 1,32∙10-2   Пример 1.Степень диссоциации уксусной кислоты в 0,1 М растворе равна 1,32∙10-2. Найдите константу диссоциации кислоты и значение рК. Решение. Подставим данные задачи в уравнение закона разбавления К = a2См/(1 –a) =...

ОПРЕДЕЛЕНИЕ ЦЕНТРА ТЯЖЕСТИ ПЛОСКОЙ ФИГУРЫ Сила, с которой тело притягивается к Земле, называется силой тяжести...

СПИД: морально-этические проблемы Среди тысяч заболеваний совершенно особое, даже исключительное, место занимает ВИЧ-инфекция...

Понятие массовых мероприятий, их виды Под массовыми мероприятиями следует понимать совокупность действий или явлений социальной жизни с участием большого количества граждан...

Studopedia.info - Студопедия - 2014-2025 год . (0.011 сек.) русская версия | украинская версия