Формализация слабоструктурированных и неструктурированных задач экономики
Самый ответственный этап системного анализа – формирование проблемной ситуации. Полученное множество проблем (проблематика) является исходным пунктом для системного анализа. После определения проблемы следующим по важности этапом анализа становится выявление целей. Содержание процесса перехода от целей к критериям и многие особенности этого перехода становятся ясными, если рассматривать критерии как количественные модели качественных целей. В самом деле, сформированные критерии в дальнейшем в некотором смысле заменяют цели. От критериев требуется как можно большее сходство с целями, чтобы оптимизация по критериям соответствовала максимальному приближении. К цели. С другой стороны, критерии не могут полностью совпадать с целями уже хотя бы потому, что они фиксируются в различных шкалах: цели – в номинальных, критерии – в более сильных, допускающих упорядочение. Критерий – это подобие цели, ее аппроксимация, модель. Конкретнее, критерий является отображением ценностей (воплощенных в целях) на параметры альтернатив (допускающие упорядочение). Определение значения критерия для данной альтернативы является, по существу, косвенным измерением степени ее пригодности как средства достижения цели. Неопределенность целевой функции имеет место в случае невозможности представления цели системы в виде скалярной целевой функции. Выбор целевой функции является одной из самых трудных проблем при проведении системных исследований. Часто целевые функции оказываются противоречащими друг другу. Например, этот факт нашел выражения в распространенной целевой функции добиться максимума эффективности с минимумом затрат. При наличии нескольких целевых функций (в том числе и противоречивых) математика не может дать однозначного ответа, но она может помочь принять решение и сделать правильный выбор. В этом и будет заключаться решение проблемы неопределённости целевой функции. Неопределённости среды и системы вызваны дефицитом информации об их состояниях. В этом случае не могут быть получены конкретные характеристики среды и системы (в том числе и стохастические). Методы решения таких задач наименее разработаны. Поэтому исследование сложных систем опирается не только на обширный математический аппарат, но и на целый ряд методов преодоления неопределенностей. Для сравнения различных целей системы вводится функция некомфортности Каждое взаимодействие из множества 1) как взвешенную сумму где
2) по наиболее важнейшей целевой функции По уровню некомфортности Пусть отношение предпочтения по важности ля всех частных целевых функций 2. Выбор главной целевой функции при введении ограничений на остальные целевые функции. 3. Последовательная оптимизация по главной целевой функции с последующим введением уступок по другим наиболее важным целевым функциям. 4. Последовательная оптимизация по важности целевых функций с достижением по каждой требуемого значения. В первом случае наиболее важная целевая функция принимается за главную системы
где Для получения хорошего решения по менее важным целевым функциям на практике приходится делать уступки Этот подход реализуется в методе последовательных уступок (второй случай), который сводится к решению последовательности задач оптимизации:
где
В качестве компромиссного решения Эффективная точка в процессе решения экономической задачи многокритериальной оптимизации ищется в области компромиссов. Минимизация в области компромиссов векторного критерия означает, что нельзя больше уменьшать значение одного из частных критериев, не увеличивая значения хотя бы одного из остальных. Для определения экстремума в области компромиссов необходимо перейти от задачи векторной оптимизации к задаче нелинейной оптимизации со специально сконструированной скалярной целевой функцией. Процесс образования скалярной функции, являющейся обобщенной целевой функцией для задачи многокритериальной оптимизации, называется объединением (свертыванием) векторного критерия оптимальности. В зависимости от информации о важности («весе») частных целевых функций можно выделить следующие типы объединения: объединение количественно «взвешенных» целевых функции; объединение целевых функций, для которых указано отношение предпочтения по важности; объединение целевых функций при отсутствии информации об их важности. Целевые функции
где Весовые коэффициенты можно интерпретировать как субъективные вероятности. Под субъективной вероятностью понимается мера уверенности некоторого человека или группы людей в том, что данное событие в действительности будет иметь место. Субъективная вероятность получается в результате опроса эксперта или _пии_пы экспертов. Она находит применение в тех случаях, когда невозможно воспользоваться вероятность объективной. Этому может быть несколько причин: неполнота или отсутствие данных о наблюдении в прошлом, в частности, отсутствие аналогов исследуемой ситуации в прошлом, необоснованно высокая стоимость получения объективной вероятности, а также подозрение, сто ранее наблюдавшиеся закономерности и полученные объективные вероятности не будут иметь место в будущем. Как мера уверенности человека в возможности наступления событий субъективная вероятность может быть формально представлена различными способами: распределением вероятностей на множестве событий, бинарным отношением на множестве событий, не полностью заданным распределением вероятностей или частным бинарным отношением или другими способами. В зависимости от формы представления выделяют количественную и качественную субъективную вероятность. Количественная субъективная вероятность является вероятностной мерой на множестве событий, удовлетворяющей той же системе аксиом, что и вероятность объективная. Поэтому с формальной точки зрения количественная субъективная вероятность ничем не отличается от объективной вероятности. Разница заключается в том смысле, которой вкладывается в эти понятия. Практически построение количественной субъективной вероятности требует от эксперта указания числовых значений вероятности для ряда событий. Известно, однако, что такая количественная информация является для человека более сложной и потому ненадежной. Значительно более простой и потому более достоверной является информация, состоящая из ответов на вопросы о сравнительной вероятности (возможности) двух событий. В связи с этим большой практический интерес представляет нечисловая формализации субъективной вероятности, основанная на использовании отношений превосходства и равенств событий поверхности (функций некомфортности как мер качества цели). Аксиомы качественной вероятности выражают минимальные требования к последовательности и непротиворечивости субъективных суждений. Основным вопросом, связанным с понятием качественной вероятности, традиционно считается вопрос о возможности построения количественной вероятности, которая в каком-либо смысле согласована с качественной. Это явилось отражением того факта, что при решении практических задач до последнего времени использовалось только количественная вероятность, а качественная вероятность вызывала только теоретический интерес. Однако в последнее время в теории принятия решений появились специальные процедуры, рассчитанные на анализ качественной информации, в связи с чем понятие качественной вероятности приобрело самостоятельное практическое значение. Для получения количественных оценок субъективной вероятности разработано большое число методов. Однако практически все эти методы (метод отношений, метод собственного значения, метод равноценной корзины, метод переменного перевала, метод фиксированного интервала и др.) основаны на проведении опроса эксперта или группы экспертов. Поэтому представляется целесообразным при решении рассматриваемой проблемы использовать формализованные методы получения количественных оценок субъективной вероятности на основе теоретико-информационного подхода. Наличие ряда ситуаций, обладающих той или иной степенью неопределённости, требуют для своего описания привлечения математического аппарата, который бы априори включал в себя вероятность появления неопределённости и ее меры (энтропии Шеннона Опираясь на постулаты качественной вероятности (Финатти и Крупмана) для простого линейного отношения порядка приоритетов целевых функций используется так называемые оценки Фишборна Заметим, что помимо простого отношения порядка предпочтения имеет место и строгое отношение порядка для определения весовых коэффициентов используется зависимость
Для целевых функций, для которых может быть установлено усиленное линейное отношение порядка для учёта значимости целевых функций используется зависимость
В качестве показателя, характеризующего степень снижения уровня неопределённости, может быть использован показатель избыточности
характеризующий степень близости вероятностных оценок к равномерному закону распределения (максимальной неопределённости при многокритериальной схеме формирования целевой функции). Сущность метода парных сравнений заключается в наиболее общей постановке в нахождении результирующего критерия выбора по оценкам, даваемым экспертами, и по показателям, полученным в результате информационно-статистического анализа исследуемой системы. Статистические методы обработки исходной информации основаны на предположении, что полученные оценки в силу ряда причин являются случайными, законы распределения которых в общем случае неизвестны. Задача метода парных сравнений заключается в том, чтобы внести меньшую погрешность (минимум недостающей информации) при идентификации законов распределения, вводимых в рассмотрение оценок, сформировать модель расчёта весовых коэффициентов этих оценок и определить и рассчитать обобщенный критерий сравнения исследуемых объектов. В тестах проверки статистических гипотез о принадлежности малой выборки ( Так, например, для нормального закона распределения где
где Статистика критерия для минимального объёма выборки Если случайные величины
Таким образом, используя полученные законы распределения инвариантной статистики Аналогичным образом можно ввести в рассмотрение инвариантные статистики для выборки из других генеральных совокупностей. Для экспоненциального закона с функцией распределения
где Очевидно, что отношение этих случайных величин не зависит от параметра распределения Действительно, можно показать, что если случайные величины Аналогично можно внести в рассмотрение законы распределения инвариантных статистик из выборок однопараметрических законов распределений (Рэлея, одностороннего нормального, Максвелла, показательно-степенного и др.). Привлечение однопараметрических законов распределений обусловлено тем обстоятельство, что в методе парных сравнений рассматриваются две случайные величины (два параметра оценки эффективности (системы), имеющих стохастическую природу). Выбор предпочтительного закона распределения в этом случае представляется целесообразным производить на основе принципа стохастического доминирования введением Дальнейшим развитием идеи стохастического доминирования может служить использование экстремальных распределений экстремальных величин. Если при парном сравнении имеют место ряд качественных показателей (строгое ранжирование), допустим, что объект и наоборот объект то, используя принцип максимума неопределённости и меру можно показать, что вероятностные меры по этим показателям имеют виз
Для этого достаточно решить следующую экстремальную задачу
В качестве модели расчёта весовых коэффициентов где Тогда обобщенные показатели сравнения можно определить следующим образом
где Согласно введенным обобщенным оценочным показателям Постановка оптимизационных задач обусловливает необходимость разработки эконометрических моделей элементов экономической структуры. Основу эконометрических моделей составляют два вида функциональных зависимостей: производственные функции и функции потребительского спроса. Производственная функция
С производственной функцией связаны вполне определенная экономическая интерпретация и некоторые показатели, используемые в экономическом анализе, прежде всего, это производительность труда и предельная производительность труда
Наиболее часто для квазистатического описания экономической динамики используются производственные функции с постоянной эластичностью замещения (CES-функции), имеющие вид
где Постоянству эластичности замещения (Constant Elasticity of Substitution – CES) соответствует условие
где
Производственная функция Кобба-Дугласа является предельным вариантом CES-функции (1) при где Для производственной функции Кобба-Дугласа эластичность замещения равна единице (основные фонды и трудовые ресурсы в одинаковой мере замещают друг друга). Вторым предельным вариантом CES-функции является функция с фиксированными пропорциями
Для производственной функции с фиксированными пропорциями эластичность замещения нулевая: основные фонды и трудовые ресурсы не могут замещать друг друга, а должны использоваться в заданной пропорции, избыток фондов или трудовых ресурсов не увеличивают выпуска, что соответствует неизменности рабочих режимов технологических процессов. Производственная функция Кобба-Дугласа и (в несколько меньшей степени) функция полезности Кобба-Дугласа стали традиционным средством анализа экономических вопросов. Однако их применение предлагает принятие довольно суровых ограничений. Например, требования гомотопической эквивалентности и единичной эластичности замены. Заметим, что общий вид гомотетичных производственных функций может быть записан как Регрессионный анализ является одним из наиболее распространенных методов обработки результатов наблюдений при изучении зависимостей в экономике и в других областях. Проблема регрессионного анализа в экономике характерна тем, что о распределениях изучаемых величин нет достаточной информации. Целью регрессионного _пиилиза является определение общего вида уравнения регрессии, построение статистических оценок неизвестных параметров, входящих в уравнение регрессии, и проверка статистических гипотез о коэффициентах регрессии. При изучении связи между двумя величинами по результатам наблюдений Если заданы
Коэффициенты линейной средней квадратической регрессии для генеральной совокупности определяются в результате минимизации функции
где
где
Прямая средней квадратической регрессии в этом случае имеет вид
Соответствующие коэффициенты регрессии для выборки могут быть записаны следующим образом
Достаточно рассмотреть выборочное распределение величины Выражение для плотности вероятности выборочного коэффициента регрессии
где Если ввести новую величину
то можно показать, что
в которой характеристики совокупности Используя распределение Стьюдента, можно поставить и решить задачу проверки статистических гипотез о равенстве единице или нулю Анализ задач распознавания явлений в случае, когда между признаками объектов и классами, к которым они могут быть отнесены, существуют вероятностные связи, показывает, что построение алгоритмов распознавания может быть основано на результатах теории статистических решений. Сущность такого подхода в теории распознавания образов заключается в следующем. Пусть совокупность объектов подразделена на классы Чтобы определить, к какому классу отнести объект вводят некоторое значение признака
|