Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Метод построения законов распределения статистик





Идентификация случайных процессов, экспресс-оценка момента их «разладки» и прогнозирование дальнейшего их развития на основе первых наблюдений может быть сведена к процедуре проверки статистических гипотез. В соответствии с этим в тестах проверки небольших последовательностей случайных чисел (коротких динамических рядов) необходимо использование некоторых функций от наблюдаемых случайных величин по терминологии Р.Фишера (статистик), законов их распределений и критериев проверки гипотез. Многие вводимые далее в рассмотрение статистики имеют форму , где и независимые случайные величины и . Обозначим их функции распределения через и , а их плотности через и соответственно. Так как величина предполагается положительной, то сосредоточена на интервале , и поэтому

, (1)

дифференцируя, находим, что отношение обладает плотностью

. (2)

Такой прием называется рандомизацией [12] и означает рассмотрение знаменателя величины как случайной величины .

Используя метод рандомизации, докажем ряд теорем, которые окажутся полезными в дальнейших приложениях.

Теорема 1. Пусть и – независимые случайные величины, плотности которых имеют вид (3)

и , (4) тогда отношение обладает плотностью

. (5)

Доказательство. В соответствие с (2)

. (6)

В последнем выражении интеграл является интегралом от плотности гамма-распределения и, естественно, равен единице.

После несложных преобразований соотношение (6) может быть преобразовано в выражение для плотности (5). Теорема доказана.

Из теоремы 1. в силу большой общности гамма-распределения вытекает ряд полезных следствий, позволяющих оценить момент разладки простейшего потока, потока Эрланга и др. Так, например, если отношение представляет собой отношение двух показательно распределенных случайных независимых величин с параметром , то плотность их отношения имеет вид . (7)

Если случайная величина распределена по экспоненциальному закону с параметром , а величина распределена по экспоненциальному закону с параметром , то плотность их отношения имеет вид

, (8)

где .







Дата добавления: 2014-12-06; просмотров: 827. Нарушение авторских прав; Мы поможем в написании вашей работы!




Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...


Теория усилителей. Схема Основная масса современных аналоговых и аналого-цифровых электронных устройств выполняется на специализированных микросхемах...


Логические цифровые микросхемы Более сложные элементы цифровой схемотехники (триггеры, мультиплексоры, декодеры и т.д.) не имеют...

Тактические действия нарядов полиции по предупреждению и пресечению групповых нарушений общественного порядка и массовых беспорядков В целях предупреждения разрастания групповых нарушений общественного порядка (далееГНОП) в массовые беспорядки подразделения (наряды) полиции осуществляют следующие мероприятия...

Механизм действия гормонов а) Цитозольный механизм действия гормонов. По цитозольному механизму действуют гормоны 1 группы...

Алгоритм выполнения манипуляции Приемы наружного акушерского исследования. Приемы Леопольда – Левицкого. Цель...

ТЕРМОДИНАМИКА БИОЛОГИЧЕСКИХ СИСТЕМ. 1. Особенности термодинамического метода изучения биологических систем. Основные понятия термодинамики. Термодинамикой называется раздел физики...

Травматическая окклюзия и ее клинические признаки При пародонтите и парадонтозе резистентность тканей пародонта падает...

Подкожное введение сывороток по методу Безредки. С целью предупреждения развития анафилактического шока и других аллергических реак­ций при введении иммунных сывороток используют метод Безредки для определения реакции больного на введение сыворотки...

Studopedia.info - Студопедия - 2014-2025 год . (0.01 сек.) русская версия | украинская версия