Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Асимптотические свойства гипернормального распределения





При больших (более 10) дифференциальное уравнение (2) можно заменить приближенным и найти аналитическое решение для квантильной функции.

Для стандартных условий дифференциальное уравнение (2) при может быть представлено в виде

.

Нетрудно проверить, что замена независимой переменной позволяет преобразовывать это уравнение к виду

.

Разделяя переменные и интегрируя, находим .

Отсюда следует ,

где и – интегральный логарифм и интегральная показательная функция соответственно.

Осуществляя обратный переход от до и от стандартных условий к естественным, можно получить функцию квантилей предельного гипернормального распределения

, . (13)

 

Таким образом, функция квантилей гипернормального распределения асимптотически приближается к функции (13). Это свойство рассмотренных экстремальных распределений позволяет описать и прогнозировать с определенным уровнем доверия экстремальные характеристики по ограниченной информации.

В общем случае можно показать, что дифференциальному уравнению (2) соответствует нелинейное дифференциальное уравнение, относительно квантильной функции

(14)

с граничными условиями

, . (15)

Для стандартных условий это уравнение имеет вид

, (16)

решение которого, представленное в виде ряда, имеет следующий вид

. (7)

Значения коэффициентов , полученные в результате решения исходного уравнения, представлены в табл. 1.

 

Таблица 1. Значение коэффициентов

                 
2, 648 2, 727 2, 940 3, 158 3, 389 3, 784 3, 967 4, 139 4, 141
0, 3804 0, 2993 0, 2612 0, 2431 0, 2355 0, 2210 0, 2162 0, 2116 0, 2114

Математическое ожидание и дисперсия случайной величины для предельного гипернормального распределения определяются по формулам

,

.

Значения функции предельного гипернормального распределения , аргументом которого является величина представлены в табличной форме.

Математические ожидания и дисперсии для гипернормального распределения при малых представлены для стандартных условий в табл. 2.

Таблица 2. Математические ожидания и дисперсии

                   
  0, 4634 0, 6865 0, 9764 1, 1355 1, 2458 1, 4656 1, 5504 1, 6748 1, 6792
  1, 1077 1, 3694 1, 6622 2, 0190 2, 3316 2, 9620 3, 3127 3, 5722 3, 6438

 

Остановимся еще на одном случае асимптотического поведения гипернормального распределения. Пусть (практически при ), естественным следствием из этого условия является . Тогда дифференциальное уравнение (2) может быть представлено для стандартных условий в виде

. (18)

Разделяя переменные, находим , (19)

где – плотность гипернормального распределения.

Интегрирование уравнения (10) позволяет убедиться в справедливости следующего утверждения.

При больших значениях аргумента гипернормальное распределение асимптотически стремится к нормальному распределению с плотностью

. (20)







Дата добавления: 2014-12-06; просмотров: 909. Нарушение авторских прав; Мы поможем в написании вашей работы!




Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...

Эндоскопическая диагностика язвенной болезни желудка, гастрита, опухоли Хронический гастрит - понятие клинико-анатомическое, характеризующееся определенными патоморфологическими изменениями слизистой оболочки желудка - неспецифическим воспалительным процессом...

Признаки классификации безопасности Можно выделить следующие признаки классификации безопасности. 1. По признаку масштабности принято различать следующие относительно самостоятельные геополитические уровни и виды безопасности. 1.1. Международная безопасность (глобальная и...

Прием и регистрация больных Пути госпитализации больных в стационар могут быть различны. В цен­тральное приемное отделение больные могут быть доставлены: 1) машиной скорой медицинской помощи в случае возникновения остро­го или обострения хронического заболевания...

Условия приобретения статуса индивидуального предпринимателя. В соответствии с п. 1 ст. 23 ГК РФ гражданин вправе заниматься предпринимательской деятельностью без образования юридического лица с момента государственной регистрации в качестве индивидуального предпринимателя. Каковы же условия такой регистрации и...

Седалищно-прямокишечная ямка Седалищно-прямокишечная (анальная) ямка, fossa ischiorectalis (ischioanalis) – это парное углубление в области промежности, находящееся по бокам от конечного отдела прямой кишки и седалищных бугров, заполненное жировой клетчаткой, сосудами, нервами и...

Основные структурные физиотерапевтические подразделения Физиотерапевтическое подразделение является одним из структурных подразделений лечебно-профилактического учреждения, которое предназначено для оказания физиотерапевтической помощи...

Studopedia.info - Студопедия - 2014-2025 год . (0.012 сек.) русская версия | украинская версия