Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Рівняння Больцмана та його спрощення





Конкретний вираз оператора T задається в основному типом випромінювання, що використовується в томоґрафії. В ідеальному випадку цей оператор повинен бути інтеґральним оператором Радона: , тобто, щоб виміряні значення p були рівними значенням інтеґралів від функції розподілу речовини всередині об’єкту дослідження по многовиду (прямих). Найближче від такої ідеальної моделі лежить Х-променева томоґрафія, бо Х- фотони (або, як їх ще називають, рентгенівські гама-кванти), якщо знехтувати їх розсіянням на ядрах молекул досліджуваної речовини, вторинними ефектами поширюються прямолінійно. Крім того, ступінь поглинання фотонів при проходження через речовину є інтеґральною характеристикою від лінійного коефіцієнта поглинання Х-променів. Побудувавши відповідну вимірювальну систему, можна добитись досить точної відповідності операторів T та R. Це стало однією з причин побудови історично першим Х- променевого томографа, хоч дослідження проводилися спочатку над радіоактивними випромінюваннями.

Взаємодія Х–випромінювання з речовиною найповніше описується рівнянням переносу (Больцмана) [1]:

, (5.6)

 

де — векторний диференціальний оператор, r — просторові координати, W — кутові координати, Е — енергія частинок (фотонів); — функція розподілу фотонів по простору r, напрямах W та енергіях Е всередині об’єкту; — функція розподілу фотонів від джерела X-випромінювання; f (r, E) — характеристика середовища; — макросічення релеївського та комптонівського розсіювання. Потік фотонів розкладається в ряд Наймана

 

, (5.7)

 

де Ip — потік первинних (нерозсіяних) фотонів, In — потік n -кратно розсіяних фотонів.

Для рівняння переносу оператор та функції і набирають вигляду:

, , .

Рівняння Больцмана є рівнянням у частинних похідних першого порядку, стаціонарне. Крайові і граничні умови визначаються схемою сканування, конструкцією джерел випромінювання, властивостями самого біооб’єкта та його розміщенням відносно скануючої системи.

Енергія X-випромінювання в медичній томоґрафії не перевищує 120 кеВ, основну частину (> 99%) становлять однократно розсіяні фотони [2, 3]. Тому рівняння (5.6) спрощується:

 

. (5.8)

 

Для томоґрафів з паралельною схемою сканування, з пристроями (коліматорами) для зменшення ширини пучка фотонів та ослаблення ефектів розсіювання та звуження спектру Х-випромінювання і достатньо високими рівнями енергії вираз взаємодії випромінювання з речовиною описується рівнянням:

 

, (5.9)

 

де c0 > 0 — потужність джерела випромінювання, r 0 — його координати, W — напрям колімації, E 0 — енергія X-фотонів джерела, .

Для двовимірного випадку, розв'язуючи (5.9) відносно і замінивши , де — нормальні координати на площині, отримаємо:

 

, (5.10)

 

де — лінії поширення випромінювання. Як видно з виразу (5.10), кількість зареєстрованих на виході з біооб’єкта фотонів експоненційно залежить від інтеґрального коефіцієнта ослаблення Х-випромінювання вздовж лінії проходження цього випромінювання через біооб’єкт.

Приведемо вираз (5.10) до вигляду основного рівняння томоґрафії. Поділимо праву і ліву його частину на c0 і пролоґарифмуємо його. Введемо оператор U, що „переводить” в радонівський образ :

 

, (5.11)

 

Отже, отримано лінійну залежність між інтеґральним коефіцієнтом ослабленням Х-випромінювання вздовж лінії його поширення та радонівською проекцією:

 

. (5.12)

 

Многовид кривих задається схемою сканування. Якщо знехтувати n -кратно розсіяними фотонами, то многовид стає наборами паралельних (для випадку схеми сканування з одним детектором), або віялоподібних (для схеми сканування з лінійкою детекторів) ліній. Формула (5.12) є математичним записом перетворення Радона. Задача знаходження оберненого перетворення розв'язана [4, 5].

Формула (5.10) набирає вигляду [6]:

 

, (5.13)

 

коли I залежить від Е (спектр пучка фотонів не моноенергетичний).

 

 







Дата добавления: 2014-12-06; просмотров: 637. Нарушение авторских прав; Мы поможем в написании вашей работы!




Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...


Теория усилителей. Схема Основная масса современных аналоговых и аналого-цифровых электронных устройств выполняется на специализированных микросхемах...

Разновидности сальников для насосов и правильный уход за ними   Сальники, используемые в насосном оборудовании, служат для герметизации пространства образованного кожухом и рабочим валом, выходящим через корпус наружу...

Дренирование желчных протоков Показаниями к дренированию желчных протоков являются декомпрессия на фоне внутрипротоковой гипертензии, интраоперационная холангиография, контроль за динамикой восстановления пассажа желчи в 12-перстную кишку...

Деятельность сестер милосердия общин Красного Креста ярко проявилась в период Тритоны – интервалы, в которых содержится три тона. К тритонам относятся увеличенная кварта (ув.4) и уменьшенная квинта (ум.5). Их можно построить на ступенях натурального и гармонического мажора и минора.  ...

Билет №7 (1 вопрос) Язык как средство общения и форма существования национальной культуры. Русский литературный язык как нормированная и обработанная форма общенародного языка Важнейшая функция языка - коммуникативная функция, т.е. функция общения Язык представлен в двух своих разновидностях...

Патристика и схоластика как этап в средневековой философии Основной задачей теологии является толкование Священного писания, доказательство существования Бога и формулировка догматов Церкви...

Основные симптомы при заболеваниях органов кровообращения При болезнях органов кровообращения больные могут предъявлять различные жалобы: боли в области сердца и за грудиной, одышка, сердцебиение, перебои в сердце, удушье, отеки, цианоз головная боль, увеличение печени, слабость...

Studopedia.info - Студопедия - 2014-2025 год . (0.012 сек.) русская версия | украинская версия