Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Энтропия




 

Физический смысл энтропии раскрывает статистическая физика, рассматривая энтропию как меру вероятности пребывания системы в данном термодинамическом состоянии (принцип Больцмана). Величина энтропии пропорциональна термодинамической вероятности состояния системы.

Состояние термодинамической системы характеризуется набором термодинамических параметров и функций. Их значения характеризуют макросостояние системы и не связаны с положением отдельных частиц в пространстве и их энергией. Таким образом, макросостояние характеризует совокупность взаимодействующих частиц, систему в целом. Очевидно, что конкретное макросостояние может быть реализовано при различном положении отдельных частиц в пространстве и их энергии, варианты которых соответствуют микросостояниям системы. Таким образом, конкретному макросостоянию системы соответствует набор ее микросостояний.

Термодинамическая вероятность (w) состояния системы определяется числом микросостояний, которым можно реализовать данное макросостояние:

,

где N – число энергетических состояний; Ni – число частиц с данной энергией.

Таким образом,термодинамическая вероятность не может быть меньше единицы (w ³ 1) и не имеет связи с математическим понятием вероятности.

Пример.Система состоит из трех частиц: a, b, c. Частицы могут находиться в трех энергетических состояниях: 1, 2, 3. Система может находиться в различных макросостояниях, которые могут быть реализованы различными способами.

Первое макросостояние. Все три частицы находятся в первом энергетическом состоянии:

a, b, c - -

; (0! = 1).

Данное макросостояние реализуется единственным способом.

Второе макросостояние. Две частицы – в первом, а третья – во втором энергетических состояниях:

a, b c -
a, c b -
b, c a -

.

Данное макросостояние реализуется тремя способами.

Третье макросостояние. Все частица находятся в разных энергетических состояниях:

a b c
a c b
b a c
a a b
b c a
c b a

.

Данное макросостояние реализуется шестью способами.

Термодинамическая вероятность системы связана с ее энтропией уравнением Больцмана (Boltzmann):

S =lnw,

где k = 1,38×10-23Дж/К – константа Больцмана (k = R/NА); w – термодинамическая вероятность состояния системы.

Величина энтропии является количественной характеристикой степени упорядоченности системы: чем более упорядочена система, тем меньше вариантов микросостояний, которыми может быть реализовано ее состояние.

Статистическое толкование понятия энтропия позволяет иным образом сформулировать второе начало термодинамики. В изолированной системе самопроизвольно будут протекать процессы с увеличением термодинамической вероятности, а состояние равновесия соответствует состоянию с максимальной вероятностью.

Очевидно, что из трех рассмотренных в примере макросостояний системы третье наиболее вероятно. Необходимо отметить, что рассматриваемая система, состоящая из трех частиц, приведена исключительно для иллюстрации понятия "термодинамическая вероятность". В реальных системах анализируемое число частиц должно быть велико, статистически значимо.

Можно определить абсолютное значение энтропии веществ, поскольку известно состояние системы с нулевым значением энтропии. Энтропия идеального кристалла при 0 К равна нулю (постулат Планка – третье начало термодинамики). Поэтому энтропия любого вещества, простого или сложного, является абсолютной и всегда имеет положительное значение.

Размерность величины энтропии [Дж/К]. Энтропия одного моля вещества в стандартных термодинамических условиях S0298 [Дж/моль×К] называется стандартной энтропией вещества, ее значения для различных веществ приведены в справочной литературе (термодинамические характеристики веществ).

Рассмотрим факторы, влияющие на величину энтропии.

1. Изменение энтропии при фазовых превращениях (плавлениеÛкристаллизация – DmH; испарениеÛконденсация – DvH; полиморфные превращения кристаллов):

.

DiH и Ti – соответственно энтальпия и температура фазового перехода. Энтропия в результате фазового перехода от низкотемпературной фазы к высокотемпературной растет (DiS>0), при обратном переходе уменьшается на ту же величину (DiS<0). Поэтому стандартная энтропия вещества в кристаллическом состоянии меньше, чем в жидком, а в жидком меньше, чем в газообразном. Данный факт очевиден: чем меньше упорядоченность системы, тем энтропия больше. В ряду "кристалл, жидкость, газ" упорядоченность уменьшается.







Дата добавления: 2014-10-22; просмотров: 764. Нарушение авторских прав

Studopedia.info - Студопедия - 2014-2017 год . (0.007 сек.) русская версия | украинская версия