Момент силы относительно центра (или точки)
Рассмотрим силу , приложенную к телу в точке A (рис. 8). Из некоторого центра О опустим перпендикуляр на линию действия силы ; длину h этого перпендикуляра называют плечом силы относительно центра О. Момент силы относительно центра О определяется: 1) модулем момента, равным произведению Fh; 2) положением в пространстве плоскости ОАВ («плоскости поворота»), проходящей через центр О и силу ; 3) направлением поворота в этой плоскости. Из геометрии известно, что положение плоскости в пространстве определяется направлением нормали (перпендикуляра) к этой плоскости. Таким образом, момент силы относительно центра характеризуется не только его числовым значением, но и направлением в пространстве, т. е. является величиной векторной. Введем следующее определение: моментом силы относительно центра О называется приложенный в центре О вектор , модуль которого равен произведению модуля F силы на ее плечо h и который направлен перпендикулярно плоскости, проходящей через центр О и силу, в ту сторону, откуда сила видна стремящейся повернуть тело вокруг центра О против хода часовой стрелки (рис. 8). Согласно этому определению . Последний результат следует из того, что площадь треугольника S D AOB = AB · h /2= Fh /2. Измеряется момент силы в ньютон-метрах (H·м). Найдем формулу, выражающую вектор . Для этого рассмотрим векторное произведение векторов и . По определению . Направлен вектор перпендикулярно плоскости ОАВ в ту сторону, откуда кратчайшее совмещение с (если их отложить от одной точки) видно происходящим против хода часовой стрелки, т. е. так же, как вектор . Следовательно, векторы и совпадают и по модулю, и по направлению, и, как легко видеть, по размерности, т. е. выражают одну и ту же величину. Отсюда = или , где – радиус-вектор точки A, проведенныйиз центра О. Таким образом, момент силы F относительно центра О равен векторному произведению радиуса-вектора , проведенного из центра О в точку А, где приложена сила, на саму силу. Этот результат может служить другим определением понятия о моменте силы относительно центра. Отметим следующие свойства момента силы: 1) момент силы относительно центра не изменяется при переносе точки приложения силы вдоль ее линии действия; 2) момент силы относительно центра О равен нулю или когда сила равна нулю, или когда линия действия силы проходит через центр О (плечо равно нулю).
|