Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Пример решения задачи 2.3





Условие. Кривошип ОА длиной R=64 см вращается вокруг неподвижной оси О с постоянной угловой скоростью w=1 рад/с и приводит в движение шатун АВ длиной L=72 см и ползун В. Для положения механизма, заданного значениями углов a=45°, b=30, ° найти скорость и ускорение ползуна В. Схема механизма приведена на рис. 2.8.

Рис. 2.8
Решение. 1. Определим скорость точки А как вращательную вокруг неподвижной точки О по соотношению . Для определения скорости точки В найдем положение мгновенного центра скоростейР, для чего покажем направление скоростей точек А и В, а затем из точек А и В восстановим перпендикуляры к их скоростям vA и vB. Точка пересечения перпендикуляров будет являться мгновенным центром скоростей Р (см. рис. 2.8).

Рассмотрим движение шатуна в данный момент времени как вращательное относительно оси, проходящей через мгновенный центр скоростей Р перпендикулярно неподвижной плоскости, по отношению к которой происходит плоское движение. Угловая скорость шатуна в этом случае

определяется из соотношения , а скорость ползуна В как вращательная – из соотношения .

Расстояния АР и BP определим из решения треугольника АВР, применив теорему синусов. Для заданного положения механизма получим

, откуда

Подставив найденные значения расстояний в соответствующие формулы, получим . Направления скоростей показаны на рис. 2.8.

2. Для определения ускорения ползуна B воспользуемся векторным равенством:

, (1)

 

где – ускорение ползуна В;

– ускорение точки А, выбранной за полюс;

– осестремительное (нормальное) ускорение точки В при ее вращении вокруг полюса А;

– вращательное (касательное) ускорение точки В при ее вращении вокруг полюса А.

Ускорение точки А кривошипа при равномерном вращении вокруг неподвижной оси О состоит только из осестремительной составляющей, модуль которой определяется формулой . Вектор ускорения точки А направлен к оси вращения (рис.2.9), .

Осестремительное ускорение точки В при ее вращении вокруг полюса А:

.

Рис. 2.9.
Рассчитать вращательное ускорение обычным способом не представляется возможным, так как величина углового ускорения звена АВ неизвестна. Несмотря на это обстоятельство, векторное равенство (1) позволяет найти ускорение ползуна В. Для этого воспользуемся тем, что нам известно направления вектора (он перпендикулярен ускорению ) и вектора ускорения искомого ускорения (вдоль прямолинейной траектории точки В).

Проведем вектор ускорения точки В, предполагая, что он направлен противоположно скорости точки В. Спроектируем векторное равенство (1) на ось u, перпендикулярную ускорению и проходящую через точки А и В, получим . Отсюда

Знак минус показывает, что истинное направление ускорения точки В противоположно принятому.


3. КОНТРОЛЬНАЯ РАБОТА ПО РАЗДЕЛУ «ДИНАМИКА»







Дата добавления: 2014-10-29; просмотров: 648. Нарушение авторских прав; Мы поможем в написании вашей работы!




Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...

Классификация холодных блюд и закусок. Урок №2 Тема: Холодные блюда и закуски. Значение холодных блюд и закусок. Классификация холодных блюд и закусок. Кулинарная обработка продуктов...

ТЕРМОДИНАМИКА БИОЛОГИЧЕСКИХ СИСТЕМ. 1. Особенности термодинамического метода изучения биологических систем. Основные понятия термодинамики. Термодинамикой называется раздел физики...

Травматическая окклюзия и ее клинические признаки При пародонтите и парадонтозе резистентность тканей пародонта падает...

Случайной величины Плотностью распределения вероятностей непрерывной случайной величины Х называют функцию f(x) – первую производную от функции распределения F(x): Понятие плотность распределения вероятностей случайной величины Х для дискретной величины неприменима...

Схема рефлекторной дуги условного слюноотделительного рефлекса При неоднократном сочетании действия предупреждающего сигнала и безусловного пищевого раздражителя формируются...

Уравнение волны. Уравнение плоской гармонической волны. Волновое уравнение. Уравнение сферической волны Уравнением упругой волны называют функцию , которая определяет смещение любой частицы среды с координатами относительно своего положения равновесия в произвольный момент времени t...

Studopedia.info - Студопедия - 2014-2025 год . (0.01 сек.) русская версия | украинская версия