Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Решение. В задании 4n=5, ибо переставляются местами всевозможными способами n=5 штук различных цифр: 1,3,5,7,9





В задании 4 n =5, ибо переставляются местами всевозможными способами n =5 штук различных цифр: 1, 3, 5, 7, 9. При этом каждой новой перестановке цифр соответствует новый телефонный номер (натуральное число). Поэтому искомое число различных телефонных номеров равно числу различных перестановок без повторений из n =5 штук различных элементов.

Согласно теории, искомое число равно Р5 = 5! = 120 различных 5– значных телефонных номеров.

Ответ: 120 различных 5– значных телефонных номеров.

 

Задание 5 (на число перестановок с повторениями.)

Сколько различных n – значных телефонных номеров (натуральных чисел) можно написать, переставляя следующий набор n штук цифр: 1, 1, 1, 3, 3, 5?

ЧИСЛО ПЕРЕСТАНОВОК С ПОВТОРЕНИЯМИ. КРАТКАЯ ТЕОРИЯ

Перестановки с повторениями

Перестановками с повторениями из т элементов n различных типов, среди которых k 1одинаковых элементов 1-го типа, k 2одинаковых элементов 2-го типа,..., k nодинаковых элементов п -го типа (k1 + k2 +... + kп = m), называются их последовательности, отличающиеся только порядком входящих в них элементов.

Пример. Перестановки из 3 элементов, среди которых 2 одинаковых элемента типа а и 1 элемент типа b: ааb, аbа, bаа.

Число перестановок из т элементов, среди которых k 1- одинаковых элементов 1-го типа, k2 одинаковых элементов2-го типа,..., kп- одинаковых элементов n -го типа [обозначается Р (m; k1, k2,..., kп) ] равно:

Р (m; k1, k2,..., kп) = т! / (k1! k2!... kп!).

Для примера перестановок с повторениями из 3 элементов, среди которых 2 одинаковых типа а и 1 элемент типа b, имеем Р (m=3; k1=2, k2=1) = 3! / (2! 1!).

КОНЕЦ ТЕОРИИ.

Решение.

В задание 5 m =6, ибо переставляются местами всевозможными способами m =6 штук различных цифр: 1, 1, 1, 3, 3, 5, среди которых есть повторяющиеся (одинаковые). При этом каждой новой перестановке цифр соответствует новый телефонный номер (натуральное число). Поэтому искомое число различных телефонных номеров равно числу различных перестановок с повторениями из m =6 штук элементов, среди которых k 1=3 одинаковых элементов 1-го типа (цифра 1), k2=2 одинаковых элементов2-го типа (цифра 3), k3 =1одинаковых элементов 3 -го типа (цифра 5), равно Р (m; k1, k2,..., kп) = т! / (k1! k2!... kп!), Р (6; 3, 2, 1) = 6! /(3! 2! 1!)= =60.

Ответ: Р (6; 3, 2, 1) = 60, т. е 60 различных вариантов 6– значных телефонных номеров (6-значных чисел), содержащих цифру 1 трижды, 3 —дважды и 5 — один раз.

 

Задание 6 ( на число неупорядоченных разбиений с фиксированными размерами частей ).

Сколько всего вариантов можно получить, разбивая группу из пяти человек (из пяти солдат) на три подгруппы — две подгруппы по два человека (по два автоматчики) и одна подгруппа из одного человека (из одного пулеметчика)?

 

НЕУПОРЯДОЧЕННЫЕ РАЗБИЕНИЯ. КРАТКАЯ ТЕОРИЯ

Неупорядоченное разбиениеn -элементного множества X — это любое семейство {X1, X2, …, Xk}, где 1≤ k≤ п; X1, X2, …, Xk - непустые попарно непересекающиеся подмножества множества X, объединение которых равноX.

Называем такое разбиение неупорядоченным, так как семейство — это неупорядоченная совокупность.

Пример. Для множества {а, b, с} неупорядоченное разбиение это, например, {{а}, {b, с}}. Причем {{а}, {b, с}}={{b, с}, {а}}.

Для множества с п элементами обозначим через D (n; k 1, k 2, …, k n) число всех таких неупорядоченных разбиений, в которых есть k 1 подмножеств с одним элементом, k 2 подмножеств с двумя элементами и т.д., где k 1≥ 0, k 2≥ 0, …, k n≥ 0; k 1+2 k 2+…+ n k n= n.

Имеем

 

 

КОНЕЦ ТЕОРИИ.

 







Дата добавления: 2014-11-10; просмотров: 638. Нарушение авторских прав; Мы поможем в написании вашей работы!




Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...


Теория усилителей. Схема Основная масса современных аналоговых и аналого-цифровых электронных устройств выполняется на специализированных микросхемах...


Логические цифровые микросхемы Более сложные элементы цифровой схемотехники (триггеры, мультиплексоры, декодеры и т.д.) не имеют...

Вопрос 1. Коллективные средства защиты: вентиляция, освещение, защита от шума и вибрации Коллективные средства защиты: вентиляция, освещение, защита от шума и вибрации К коллективным средствам защиты относятся: вентиляция, отопление, освещение, защита от шума и вибрации...

Задержки и неисправности пистолета Макарова 1.Что может произойти при стрельбе из пистолета, если загрязнятся пазы на рамке...

Вопрос. Отличие деятельности человека от поведения животных главные отличия деятельности человека от активности животных сводятся к следующему: 1...

Роль органов чувств в ориентировке слепых Процесс ориентации протекает на основе совместной, интегративной деятельности сохранных анализаторов, каждый из которых при определенных объективных условиях может выступать как ведущий...

Лечебно-охранительный режим, его элементы и значение.   Терапевтическое воздействие на пациента подразумевает не только использование всех видов лечения, но и применение лечебно-охранительного режима – соблюдение условий поведения, способствующих выздоровлению...

Тема: Кинематика поступательного и вращательного движения. 1. Твердое тело начинает вращаться вокруг оси Z с угловой скоростью, проекция которой изменяется со временем 1. Твердое тело начинает вращаться вокруг оси Z с угловой скоростью...

Studopedia.info - Студопедия - 2014-2025 год . (0.011 сек.) русская версия | украинская версия