Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Задание 22 (на распределение Пуассона)





Прядильщица обслуживает n =50 станков. Вероятность p обрыва нити за смену на одном станке мала. При этом величина np постоянна. Найти вероятность обрыва нити за смену на пяти (m =5) станках. Решить задание 18при p =0, 02.

Решение.

Задание 22 – на распределение Пуассона (закон малых чисел или редких событий), как один из предельных случаев биномиального распределения. Биномиальное распределение здесь неприменимо ввиду того, что n =50, и число n! = 50! не поддается вычислению. Параметр распределения Пуассона a = np =50× 0, 02=1. Поэтому имеем искомую вероятность P (Am)= e-a a m / m! =

= e- 115/5! =2, 718 - 1× 1/120»0, 00307.

Ответ: Искомая вероятность равна P (Am)»0, 00307.

 

Задание 23 ( на нормальное распределение вероятности ).

Вероятность появления события в каждом из n =100 независимых испытаний постоянна и равна p =0, 8. Найти вероятность того, что событие появится: 1) не менее 75 раз и не более 90 раз; 2) не менее 75 раз; 3) не более 74 раз.

РЕШЕНИЕ.

Задание 23 – на нормальное распределение вероятности (на интегральную теорему Муавра - Лапласа). Воспользуемся интегральной теоремой Муавра – Лапласа: Pn (k 1, k 2)»F(x 1) - F(x 2), где F(x) - функция Лапласа (см. ниже таблицу функции Лапласа), x 1=(k 1- np)/ , x 2=(k 2- np)/ .

1) По условию, n =100, p =0, 8, q =0, 2, k 1=75, k 2=90. Вычислим x 1 и x 2: x 1=(k 1- np)/ =(75-100× 0, 8)/ =-1, 25,

x 2=(k 2- np)/ =(90-100× 0, 8)/ =2, 5. Учитывая, что функция Лапласа нечетная, т. е. F(- x) =- F(x), получим P 100 (75; 90)»

»F(2, 5) - F(-1, 25). По таблице функции Лапласа найдем: F(2, 5)=0, 4938; F(-1, 25)=0.3944. Искомая вероятность P 100 (75; 90)» F(2, 5)- F(-1, 25)= =0, 4938+0.3944=0, 8882.

Ответ: P 100 (75; 90) =0, 8882.

2) Требование появления события не менее 75 раз означает, что число появлений события может быть равно 75, 76, …., 100. Тогда, как и раньше, x 1=(k 1- np)/ =(75-100× 0, 8)/ =-1, 25. Однако x 2 будет другим: x 2=(k 2- np)/ =(100-100× 0, 8)/ = 5. По таблице функции Лапласа найдем: F(5)=0, 5; F(-1, 25)=0.3944. Искомая вероятность P 100 (75; 100)»F(5)- F(-1, 25)= =0, 5+0.3944=0, 8944.

Ответ: P 100 (75; 100) =0, 8944.

3) События «появилось не менее 75 раз» и «появилось не более 74 раз» противоположны. Поэтому сумма вероятностей этих событий равна единице. Следовательно, искомая вероятность равна P 100 (0; 74)»

»1- P 100 (75; 100)=1- 0, 8944=0, 1056.

Ответ: P 100 (0; 74) =0, 1056.

 

Таблица значений функции Лапласа Ф(х)=

X Ф(х) X Ф(x) X Ф(х) X Ф(х)
0, 00 0, 0000 0, 31 0, 1217 0, 62 0, 2324 0, 93 0, 3238
0, 01 0, 0040 0, 32 0, 1255 0, 63 0, 2357 0, 94 0, 3264
0, 02 0, 0080 0, 33 0, 1293 0, 64 0, 2389 0, 95 0, 3289
0, 03 0, 0120 0, 34 0, 1331 0, 65 0, 2422 0, 96 0, 3315
0, 04 0, 0160 0, 35 0, 1368 0, 66 0, 2454 0, 97 0, 3340
0, 05 0, 0199 0, 36 0, 1406 0, 67 0, 2486 0, 98 0, 3365
0, 06 0, 0239 0, 37 0, 1443 0, 68 0, 2517 0, 99 0, 3389
0, 07 0, 0279 0, 38 0, 1480 0, 69 0, 2549 1, 00 0, 3413
0, 08 0, 0319 0, 39 0, 1517 0, 70 0, 2580 1, 01 0, 3438
0, 09 0, 0359 0, 40 0, 1554 0, 71 0, 2611 1, 02 0, 3461
0, 10 0, 0398 0, 41 0, 1591 0, 72 0, 2642 1, 03 0, 3485
0, 11 0, 0438 0, 42 0, 1628 0, 73 0, 2673 1, 04 0, 3508
0, 12 0, 0478 0, 43 0, 1664 0, 74 0, 2703 1, 05 0, 3531
0, 13 0, 0517 0, 44 0, 1700 0, 75 0, 2734 1, 06 0, 3554
0, 14 0, 0557 0, 45 0, 1736 0, 76 0, 2764 1, 07 0, 3577
0, 15 0, 0596 0, 46 0, 1772 0, 77 0, 2794 1, 08 0, 3599
0, 16 0, 0636 0, 47 0, 1808 0, 78 0, 2823 1, 09 0, 3621
0, 17 0, 0675 0, 48 0, 1844 0, 79 0, 2852 1, 10 0, 3643
0, 18 0, 0714 0, 49 0, 1879 0, 80 0, 2881 1, 11 0, 3665
0, 19 0, 0753 0, 50 0, 1915 0, 81 0, 2910 1, 12 0, 3686
0, 20 0, 0793 0, 51 0, 1950 0, 82 0, 2939 1, 13 0, 3708
0, 21 0, 0832 0, 52 0, 1985 0, 83 0, 2967 1, 14 0, 3729
0, 22 0, 0871 0, 53 0, 2019 0, 84 0, 2995 1, 15 0, 3749
0, 23 0, 0910 0, 54 0, 2054 0, 85 0, 3023 1, 16 0, 3770
0, 24 0, 0948 0, 55 0, 2088 0, 86 0, 3051 1, 17 0, 3790
0, 25 0, 0987 0, 56 0, 2123 0, 87 0, 3078 1, 18 0, 3810
0, 26 0, 1026 0, 57 0, 2157 0, 88 0, 3106 1, 19 0, 3830
0, 27 0, 1064 0, 58 0, 2190 0, 89 0, 3133 1, 20 0, 3949
0, 28 0, 1103 0, 59 0, 2224 0, 90 0, 3159 1, 21 0, 3869
0, 29 0, 1141 0, 60 0, 2257 0, 91 0, 3186 1, 22 0, 3888
0, 30 0, 1179 0, 61 0, 2291 ] 0, 92 0, 3212 1, 23 0, 3907

 

X Ф(х) X Ф(х) X Ф(x) X Ф(х)
1, 24 0, 3925 1, 58 0, 4429 1, 92 0, 4726 2, 52 0, 4941
1, 25 0, 3944 1, 59 0, 4441 1, 93 0, 4732 2, 54 0, 4945
1, 26 0, 3962 1, 60 0, 4452 1, 94 0, 4738 2, 56 0, 4948
1, 27 0, 3980 1, 61 0, 4463 1, 95 0, 4744 2, 58 0, 4951
1, 28 0, 3997 1, 62 0, 4474 1, 96 0, 4750 2, 60 0, 4953
1, 29 0, 4015 1, 63 0, 4484 1, 97 0, 4756 2, 62 0, 4956
1, 30 0, 4032 1, 64 0, 4495 1, 98 0, 4761 2, 64 0, 4959
1, 31 0, 4049 1, 65 0, 4505 1, 99 0, 4767 2, 66 0, 4961
1, 32 0, 4066 1, 66 0, 4515 2, 00 0, 4772 2, 68 0, 4963
1, 33 0, 4082 1, 67 0, 4525 2, 02 0, 4783 2, 70 0, 4965
1, 34 0, 4099 1, 68 0, 4535 2, 04 0, 4793 2, 72 0, 4967
1, 35 0, 4115 1, 69 0, 4545 2, 06 0, 4803 2, 74 0, 4969
1, 36 0, 4131 1, 70 0, 4554 2, 08 0, 4812 2, 76 0, 4971
1, 37 0, 4147 1, 71 0, 4564 2, 10 0, 4821 2, 78 0, 4973
1, 38 0, 4162 1, 72 0, 4573 2, 12 0, 4830 2, 80 0, 4974
1, 39 0, 4177 1, 73 0, 4582 2, 14 0, 4838 2, 82 0, 4976
1, 40 0, 4192 1, 74 0, 4591 2, 16 0, 4846 2, 84 0, 4977
1, 41 0, 4207 1, 75 0, 4599 2, 18 0, 4854 2, 86 0, 4979
1, 42 0, 4222 1, 76 0, 4608 2, 20 0, 4861 2, 88 0, 4980
1, 43 0, 4236 1, 77 0, 4616 2, 22 0, 4868 2, 90 0, 4981
1, 44 0, 4251 1, 78 0, 4625 2, 24 0, 4875 2, 92 0, 4982
1, 45 0, 4265 1, 79 0, 4633 2, 26 0, 4881 2, 94 0, 4984
1, 46 0, 4279 1, 80 0, 4641 2, 28 0, 4887 2, 96 0, 4985
1, 47 0, 4292 1, 81 0, 4649 2, 30 0, 4893 2, 98 0, 4986
1, 48 0, 4306 1, 82 0, 4656 2, 32 0, 4898 3, 00 0, 49865
1, 49 0, 4319 1, 83 0, 4664 2, 34 0, 4904 3, 20 0, 49931
1, 50 0, 4332 1, 84 0, 4671 2, 36 0, 4909 3, 40 0, 49966
1, 51 0, 4345 1, 85 0, 4678 2, 38 0, 4913 3, 60 0, 499841
1, 52 0, 4357 1, 86 0, 4686 2, 40 0, 4918 3, 80 0, 499928
1, 53 0, 4370 1, 87 0, 4693 2, 42 0, 4922 4, 00 0, 499968
1, 54 0, 4382 1, 88 0, 4699 2, 44 0, 4927 4, 50 0, 499997
1, 55 0, 4394 1, 89 0, 4706 2, 46 0, 4931 5, 00 0, 500000
1, 56 0, 4406 1, 90 0, 4713 2, 48 0, 4934    
1, 57 0, 4418 ! 1, 91 0, 4719 2, 50 0, 4938    

 







Дата добавления: 2014-11-10; просмотров: 708. Нарушение авторских прав; Мы поможем в написании вашей работы!




Шрифт зодчего Шрифт зодчего состоит из прописных (заглавных), строчных букв и цифр...


Картограммы и картодиаграммы Картограммы и картодиаграммы применяются для изображения географической характеристики изучаемых явлений...


Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...

Задержки и неисправности пистолета Макарова 1.Что может произойти при стрельбе из пистолета, если загрязнятся пазы на рамке...

Вопрос. Отличие деятельности человека от поведения животных главные отличия деятельности человека от активности животных сводятся к следующему: 1...

Расчет концентрации титрованных растворов с помощью поправочного коэффициента При выполнении серийных анализов ГОСТ или ведомственная инструкция обычно предусматривают применение раствора заданной концентрации или заданного титра...

Потенциометрия. Потенциометрическое определение рН растворов Потенциометрия - это электрохимический метод иссле­дования и анализа веществ, основанный на зависимости равновесного электродного потенциала Е от активности (концентрации) определяемого вещества в исследуемом рас­творе...

Гальванического элемента При контакте двух любых фаз на границе их раздела возникает двойной электрический слой (ДЭС), состоящий из равных по величине, но противоположных по знаку электрических зарядов...

Сущность, виды и функции маркетинга персонала Перснал-маркетинг является новым понятием. В мировой практике маркетинга и управления персоналом он выделился в отдельное направление лишь в начале 90-х гг.XX века...

Studopedia.info - Студопедия - 2014-2025 год . (0.015 сек.) русская версия | украинская версия