Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Теоретические сведения. Иррациональным числом называют бесконечную десятичную непериодическую дробь, например, 0,131331333125





Иррациональным числом называют бесконечную десятичную непериодическую дробь, например, 0, 131331333125.... Известные в математике число , число (основание натуральных логариф­мов) также являются числами иррациональными.

Другой пример, приводящий к понятию иррационального числа, дает следующая теорема: «Не существует рационального числа, квадрат которого равен двум». Иными словами, решение уравнения невозможно на множестве рациональных чисел. Корнями такого уравнения являются иррациональные числа .

Любое рациональное число вида , где , может быть представлено в виде конечной или бесконечной периоди­ческой десятичной дроби.

Корнем k -й степени, где и , из действитель­ного числа а называется действительное число х, k -я степень которого равна а.

Корень k -й степени из числа а обозначается символом . Согласно определению .

Нахождение корня k -й степени из числа а называется извлечением корня. Число k называют показателем корня, число а — подкоренным выражением.

Заметим, что , где и , не существует. На­пример, выражения , не имеют смысла. Корень нечет­ной степени извлекается и из отрицательного числа. Например , так как .

Рациональные и иррациональные числа образуют множество действительных чисел.

Действительным числом называется бесконечная десятичная дробь, т.е. дробь вида или , где - целое неотрицательное число, а каждая из букв - это одна из десяти цифр: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9.

Модулем (абсолютной величиной) действительного числа а называется само это число, если , и противоположное число , если . Модуль а обозначается . Итак,

Геометрически означает расстояние на координатной прямой от точки, изображающей число а, до начала отсчета.

Модуль нуля равен нулю.

Если , то на координатной прямой существуют две точки а и - а, равноудаленные от нуля (рис. 1), модули которых равны.

Рис. 1 Координатная прямая

Пример1. Записать выражение без знака модуля:

1) ; 2) ; 3) ; 4) .

Решение. 1) Здесь под имеется в виду . По определению модуля имеем:

или .

2) Здесь под имеется в виду . По определению модуля имеем:

или 3 .

3) Здесь под имеется в виду . По определению модуля имеем:

.

4) Здесь под имеется в виду , выражение от модуля не зависит.

Используем определение для раскрытия модуля:

,

или .

Пример 2. При каких значениях х данное выражение имеет смысл:

1) ; 2) ; 3) .

Решение. 1) Из определения арифметического квадратно­го корня следует, что . Умножим обе части этого нера­венства на -1 и получим .

2) На основании определения арифметического квадратного корня имеем , или .

3) для всех , значит, выражение имеет смысл при любом значении х.

Пример 3. При каких значениях х справедливо равенство ?

Решение. Так как , то исходное равенство примет вид . А это равенство справедливо только при , т. е. при .

Пример 4. Упростить выражение:

1) ; 2) .

Решение. 1) Обратим внимание, что . Поэтому так как .

2) Выражение представим так: . Тогда .

Теперь выражение примет вид . Упростим его:

.







Дата добавления: 2014-10-22; просмотров: 913. Нарушение авторских прав; Мы поможем в написании вашей работы!




Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...

Субъективные признаки контрабанды огнестрельного оружия или его основных частей   Переходя к рассмотрению субъективной стороны контрабанды, остановимся на теоретическом понятии субъективной стороны состава преступления...

ЛЕЧЕБНО-ПРОФИЛАКТИЧЕСКОЙ ПОМОЩИ НАСЕЛЕНИЮ В УСЛОВИЯХ ОМС 001. Основными путями развития поликлинической помощи взрослому населению в новых экономических условиях являются все...

МЕТОДИКА ИЗУЧЕНИЯ МОРФЕМНОГО СОСТАВА СЛОВА В НАЧАЛЬНЫХ КЛАССАХ В практике речевого общения широко известен следующий факт: как взрослые...

Решение Постоянные издержки (FC) не зависят от изменения объёма производства, существуют постоянно...

ТРАНСПОРТНАЯ ИММОБИЛИЗАЦИЯ   Под транспортной иммобилизацией понимают мероприятия, направленные на обеспечение покоя в поврежденном участке тела и близлежащих к нему суставах на период перевозки пострадавшего в лечебное учреждение...

Кишечный шов (Ламбера, Альберта, Шмидена, Матешука) Кишечный шов– это способ соединения кишечной стенки. В основе кишечного шва лежит принцип футлярного строения кишечной стенки...

Studopedia.info - Студопедия - 2014-2025 год . (0.012 сек.) русская версия | украинская версия