Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

ФУНКЦИИ





Функция – одно из важнейших понятий математики.

__________________________________________________________________

Определение 5. Числовой функцией называется такое соответствие между числовым множеством X и множеством действительных чисел R, при котором каждому числу множества X соответствует единственное число из множества R.

_____________________________________________________________________________________________

 

Множество X называют областью определения функции.

Функции принято обозначать буквами f, g, h и др.

Если f – функция на множестве X, то действительное число у соответствующее числу х из множества X, часто обозначают f(х) и пишут у= f(х). Переменную х при этом называют аргументом (или независимой переменной), а у – функцией.

Множество чисел вида f(x) для всех х из множества Х называют областью значений функции f.

Часто функции задают с помощью формул y = f(х), указывающих как по данному значению аргумента найти соответствующее значение функции.

Иногда при задании функции с помощью формулы ее область определения не указывается. Втаких случаях считают, что областью определения функции является область определения выражения f(x) (множество допустимых значений выражения f(x)).

Кроме формул, функции могут быть заданы:

- при помощи таблицы;

- графически.

Графиком функции у = f(х) с областью определения X является множество таких точек координатной плоскости, которые имеют абсциссу х и ординату f(х) для всех х из множества X.

Не каждое множество точек на координатной плоскости представляет собой график некоторой функции.

Например,

 

 

Линия не является графиком функции.

 

 

Функции могут обладать многими свойствами, одно из которых – монотонность.

__________________________________________________________________

Определение 6. Функция f называется монотонной на некотором промежутке А, если она на этом промежутке возрастает или убывает.

_____________________________________________________________________________________________

__________________________________________________________________

Определение 7. Функция f называется возрастающей на некото­ром промежутке А, если для любых чисел X1 и Х2 из множества А выполняется условие: х, < х2 => f(x1) < f(х2) (большему значению аргумента соответствует большее значение функции).

_____________________________________________________________________________________________

__________________________________________________________________

Определение 8. Функция f называется убывающей на некотором промежутке А, если для любых чисел x1, х2 из множества А вы­полняется условие: x1 < х2 = f(x1) > f(х2) (большему значению аргу­мента соответствует меньшее значение функции).

____________________________________________________________________________________

Пример 4.

Функция задана аналитически (формулой) у = 2х + 1.

1. Построить график функции, если ее область определена

а) Х = [– 0; 2]; б) Х = {– 2, – 1, 0, 1, …}; в) X = R

2. Исследовать на монотонность

1). Построить график функций:

а) б) в)

2) исследуем функцию на монотонность. Пусть х1 < х2 Þ f(x1)= 2x1 + 2 и f(x2) = 2x2 + 2.

Найдем разность

f(x1) – f(x2)= (2x1 + 2)–(2x2 + 2) =(2x1 – 2x2)+ 2 – 2 = 2 (x1 – x2)< 0, т.к. x1 < x2;

f(x1) – f(x2)< 0Þ f(x1) < f(x2)

Получили: x1 < x2 Þ f(x1) < f(x2), по определению (6) функция у = 2х + 2 возрастающая.

__________________________________________________________________

Определение 9. Прямой пропорциональностью называется функ­ция вида у =kх, где k ¹ 0 и k – действительное число.

_____________________________________________________________________________________________

 

Если отношение двух величин равно некоторому числу, отличному от нуля, их называют прямо пропорциональными. В нашем случае (k ¹ 0), k – коэффициент пропорциональности.

Некоторые свойства прямой пропорциональной зависимости.

1. Областью определения и областью значений функции является множество действительных чисел.

2. Графиком функции является прямая, проходящая через начало координат.

 

3. При k > 0 функция возрастает на всей области определения, при k < 0 – убывает на всей области определения.

4. Если f – прямая пропорциональность и 1 у1), (х2, у2) – пары соответственных значений переменных х и у, причем х1 ¹ 0, то . Если х > 0 и у > 0, то основное свойство прямой пропорциональной зависимости можно сформулировать так: с увеличением (уменьшением) значения переменной х в несколько раз соответствующее значение переменной у увеличивается (уменьшается) во столько же раз.

__________________________________________________________________

Определение 10. Обратной пропорциональностью называет функция вида у = , где к – не равное нулю действительное число.

_____________________________________________________________________________________________

 

Если произведение двух величин равно некоторому числу, отличному от нуля, то эти величины называют обратно пропорциональными.

В нашем случае х × у = k(k¹ 0), k – коэффициент пропорциональности.

Некоторые свойства обратной пропорциональной зависимости

1. Областью определения и областью значений функции множество действительных чисел, отличных от нуля.

2. Графиком функции является гипербола.

 

3. При k > 0 – функция убывающая на всей области определения, при k < 0 – функция возрастающая на всей области определения.

4. Если f – обратная пропорциональность и 1, у1), (х2, у2) - пары соответственных значений переменных х и у, то . Если х > 0 и у > 0, то основное свойство обратной пропорциональной зависимости, сформулировать можно так: с увеличением (уменьшением) значения аргумента х в несколько раз соответствующее значение переменной у уменьшается (увеличивается) во столько же раз.

___________________________________________________________________

Определение 11. Функция, которая может быть задана при помо­щи формулы у = kх + с, называется линейной, k ¹ 0.

______________________________________________________________________________________________

 

Некоторые ее свойства:

1. Областью определения и областью значений функции является множество действительных чисел.

2. Графиком является прямая, пересекающая ось ОY в точке с ординатой с.

3. При k > 0 функция возрастает на всей области определения, при k < 0 – убывает на всей области определения.







Дата добавления: 2014-11-10; просмотров: 1069. Нарушение авторских прав; Мы поможем в написании вашей работы!




Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...

ОЧАГОВЫЕ ТЕНИ В ЛЕГКОМ Очаговыми легочными инфильтратами проявляют себя различные по этиологии заболевания, в основе которых лежит бронхо-нодулярный процесс, который при рентгенологическом исследовании дает очагового характера тень, размерами не более 1 см в диаметре...

Примеры решения типовых задач. Пример 1.Степень диссоциации уксусной кислоты в 0,1 М растворе равна 1,32∙10-2   Пример 1.Степень диссоциации уксусной кислоты в 0,1 М растворе равна 1,32∙10-2. Найдите константу диссоциации кислоты и значение рК. Решение. Подставим данные задачи в уравнение закона разбавления К = a2См/(1 –a) =...

Экспертная оценка как метод психологического исследования Экспертная оценка – диагностический метод измерения, с помощью которого качественные особенности психических явлений получают свое числовое выражение в форме количественных оценок...

Ситуация 26. ПРОВЕРЕНО МИНЗДРАВОМ   Станислав Свердлов закончил российско-американский факультет менеджмента Томского государственного университета...

Различия в философии античности, средневековья и Возрождения ♦Венцом античной философии было: Единое Благо, Мировой Ум, Мировая Душа, Космос...

Характерные черты немецкой классической философии 1. Особое понимание роли философии в истории человечества, в развитии мировой культуры. Классические немецкие философы полагали, что философия призвана быть критической совестью культуры, «душой» культуры. 2. Исследовались не только человеческая...

Studopedia.info - Студопедия - 2014-2026 год . (0.013 сек.) русская версия | украинская версия