Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Структурные средние





 

Структурные средние применяются для характеристики рядов распределения. К ним относятся мода и медиана.

Мода (Мо) – это наиболее часто встречающееся значение признака в совокупности, т.е. значение, имеющее наибольшую частоту.

Медиана (Ме) – это середина ряда распределения, т.е. значение признака, делящее рад распределения пополам по количеству единиц совокупности. Половина единиц совокупности имеют значения признака меньше медианы, вторая половина больше медианы.

Для нахождения моды по дискретному ряду распределения нужно выбрать значение, имеющее наибольшую частоту. Моды могут быть одна или две.

Для нахождения медианы по дискретному ряду распределения необходимо определить накопленные частоты и найти номер середины ряда. Далее выбирается то значение признака, где превышается половина единиц совокупности, т.е. значение из той группы единиц, в которой находится середина ряда распределения.

По интервальным рядам мода определяется по формуле.

 

(34)

 

где о – нижний конец модального интервала (с наибольшей частотой);

k – ширина интервала;

fМо, fМо-1, fМо+1 – частоты в модальном интервале, до него и после него.

Медиана определяется по формуле

 

(35)

 

где XМе– нижний конец медианного интервала (где превышена половина единиц совокупности по накопленным частотам);

k – ширина интервала;

fМе – частота в медианном интервале;

fМе-1Накоп – накопленная частота до медианного интервала.

 
Мода
хi
fi
Мода
f
х
 
Медиана
х
S
Рис. 3
Рис. 5
Рис. 4

Моду и медиану можно также определить графически. Мода определяется по полигону (рис. 3) или гистограмме (рис.4) распределения. В первом случае мода соответствует наибольшей ординате. Во втором – правую вершину модального прямоугольника соединяют с правым углом предыдущего прямоугольника, а левую вершину – с левым углом последующего прямоугольника. Абсцисса точки пересечения – этих прямых будет модой распределения. Медиана определяется по кумуляте (рис. 5). Для ее определения высоту наибольшей ординаты, которая соответствует общей численности совокупности, делят пополам. Через полученную точку проводят прямую, параллельную оси абсцисс, до пересечения ее с кумулятой. Абсцисса точки пересечения является медианой.

 

 

Рис. 3-5 Графическое представление моды и медианы

 

Соотношение средней, моды и медианы между собой позволяет сделать вывод об асимметрии распределения признака в совокупности.

 

1. Распределение симметрично, если

2. Распределение имеет правостороннюю асимметрию, если

3. Распределение имеет левостороннюю асимметрию, если







Дата добавления: 2014-11-10; просмотров: 607. Нарушение авторских прав; Мы поможем в написании вашей работы!




Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...

Методы прогнозирования национальной экономики, их особенности, классификация В настоящее время по оценке специалистов насчитывается свыше 150 различных методов прогнозирования, но на практике, в качестве основных используется около 20 методов...

Методы анализа финансово-хозяйственной деятельности предприятия   Содержанием анализа финансово-хозяйственной деятельности предприятия является глубокое и всестороннее изучение экономической информации о функционировании анализируемого субъекта хозяйствования с целью принятия оптимальных управленческих...

Образование соседних чисел Фрагмент: Программная задача: показать образование числа 4 и числа 3 друг из друга...

Условия приобретения статуса индивидуального предпринимателя. В соответствии с п. 1 ст. 23 ГК РФ гражданин вправе заниматься предпринимательской деятельностью без образования юридического лица с момента государственной регистрации в качестве индивидуального предпринимателя. Каковы же условия такой регистрации и...

Седалищно-прямокишечная ямка Седалищно-прямокишечная (анальная) ямка, fossa ischiorectalis (ischioanalis) – это парное углубление в области промежности, находящееся по бокам от конечного отдела прямой кишки и седалищных бугров, заполненное жировой клетчаткой, сосудами, нервами и...

Основные структурные физиотерапевтические подразделения Физиотерапевтическое подразделение является одним из структурных подразделений лечебно-профилактического учреждения, которое предназначено для оказания физиотерапевтической помощи...

Studopedia.info - Студопедия - 2014-2025 год . (0.012 сек.) русская версия | украинская версия