Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Производные высших порядков. 1.Найти , если .





 

Пусть функция дифференцируема на интервале . Производную называют производной первого порядка или первой производной функции . Если первая производная дифференцируема на интервале , то ее производную называют второй производной или производной второго порядка функции . Для производной второго порядка приняты следующие обозначения:

, или .

Аналогично определяется производная порядка n :

,

при этом под производной нулевого порядка подразумевается сама функция .

 

 

Пример 1.

Найти функции .

Решение.

Найдем первую производную:

.

Тогда .

 

Пример 2.

Найти , если .

Решение.

Последовательно находим производные :

 

 

Пример 3.

Записать формулу для производной -го порядка, если .

Решение.

Имеем: , , .

Заметив закономерность в выражениях для , можно записать формулу для n -й производной , .

 

 

Пример 4.

Найти для функции, заданной параметрически:

.

Решение.

Используем правило однократного дифференцирования функций, заданной параметрически:

 

.

Находим первую производную данной в условии задачи функции:

.

Составляем теперь формулу для второй производной по тому же правилу дифференцирования функции, заданной параметрически:

 

.

 

Вторую производную записываем также в параметрической форме:

.

 

 

Пример 5.

Показать, что функция удовлетворяет уравнению .

Решение.

Находим и :

, , и подставим их в уравнение:

.

Получили верное равенство, значит функция удовлетворяет уравнению , что и требовалось показать.

 

 

Самостоятельная работа.

Вариант 1.

1. Найти , если .

2. Найти для функции, заданной параметрически:

.

 

 

Вариант 2.

1. Найти , если .

2. Найти для функции, заданной параметрически:

.

 

 

Вариант 3.

1. Найти , если .

2. Найти для функции, заданной параметрически:

.

 

 

Ответы.

Вариант 1.

1. ; 2. .

Вариант 2.

1. ; 2. .

Вариант 3.

1. ; 2. .

 

Список учебной литературы

 

 

1. Пискунов, Н.С. Дифференциальное и интегральное исчисления: Учеб.пособие для вузов: В 2-х т. Т.1/ Н.С. Пискунов. –М.: Интеграл-Пресс, 2001. - 416с.

 

2. Письменный, Д.Т. Конспект лекций по высшей математике: В 2-х ч. Ч.1/ Д.Т. Письменный. –М.: Рольф, 2001. - 288с.

 

3. Щипачев, В.С. Высшая математика/ В.С. Щипачев. –М.: Высш.шк., 1988. – 479с.

 

4. Берман, Г.Н. Сборник задач по курсу математического анализа/ Г.Н.Берман. –М.: Наука, 1985. – 416с.

 

5. Щипачев, В.С. Сборник задач по высшей математике/ В.С. Щипачев.

-М.: Высш.шк., 1998. – 304с.

 

6. Данко, П.Е. Высшая математика в упражнениях и задачах: В 2-х ч. Ч.1/ П.Е. Данко, А.Г. Попов, Т.Я. Кожевникова. –М.: Высш.шк., 1996. -304с.

 

 







Дата добавления: 2014-11-10; просмотров: 572. Нарушение авторских прав; Мы поможем в написании вашей работы!




Картограммы и картодиаграммы Картограммы и картодиаграммы применяются для изображения географической характеристики изучаемых явлений...


Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...

Тема 2: Анатомо-топографическое строение полостей зубов верхней и нижней челюстей. Полость зуба — это сложная система разветвлений, имеющая разнообразную конфигурацию...

Виды и жанры театрализованных представлений   Проживание бронируется и оплачивается слушателями самостоятельно...

Что происходит при встрече с близнецовым пламенем   Если встреча с родственной душой может произойти достаточно спокойно – то встреча с близнецовым пламенем всегда подобна вспышке...

Характерные черты немецкой классической философии 1. Особое понимание роли философии в истории человечества, в развитии мировой культуры. Классические немецкие философы полагали, что философия призвана быть критической совестью культуры, «душой» культуры. 2. Исследовались не только человеческая...

Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит...

Кран машиниста усл. № 394 – назначение и устройство Кран машиниста условный номер 394 предназначен для управления тормозами поезда...

Studopedia.info - Студопедия - 2014-2025 год . (0.012 сек.) русская версия | украинская версия