Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Регрессионная модель среднедушевых сбережений при гетероскедастичности остатков





В табл.2.1 представлены данные (в млн. руб.) о среднедушевых сбережениях (y) и доходах (x) в n =10 семьях. Требуется построить две линейные регрессионные модели, характеризующие зависимость денежных сбережений (y) от среднедушевых доходов (x), соответственно, при соблюдении исходных предпосылок классической регрессионной модели и гетероскедастичности случайных регрессионных остатков. Сравнить точность оценок параметров q 0 и q 1 моделей.

Таблица 2.1.

№ семьи (i)                    
yi (млн.руб) 0, 3 0, 1 2, 2 0, 9 4, 0 1, 7 5, 8 2, 5 7, 5 3, 0
xi (млн.руб) 1, 0 2, 0 3, 0 4, 0 5, 0 6, 0 7, 0 8, 0 9, 0 10, 0

 

Решение. Предварительно представим наши данные графически. На рис. 2.1 представлены на плоскости все наши n =10 наблюдений, а также график линейного уравнения регрессии .

Рис.2.1. Данные о среднедушевых сбережениях (y) и доходах (x)

Из графика следует правомерность выбора линейной регрессионной модели вида:

yi = q0 + q1xi + ei, i = 1, 2,..., n (2.1)

Здесь подлежащий оцениванию вектор неизвестных коэффициентов уравнения имеет вид

а) При построении классической линейной регрессионной модели предполагается, что случайные остатки ei независимы, нормальны и гомоскедастичны, т.е. ei Î N(0, s 2) и М eiej= 0 при i ¹ j и i, j = 1, 2,..., n.

В случае классической регрессионной модели МНК-оценка вектора qопределяется из выражения:

,

где для нашего примера

;

 

тогда

; ; .

и

Тогда оценка уравнения регрессии имеет вид:

(2.2)

 

Найдем несмещенную оценку остаточной дисперсии:

откуда несмещенная оценка среднеквадратического отклонения равна

Оценку ковариационной матрицы вектора определим из выражения:

Таким образом, имеем исправленные оценки дисперсии элементов вектора : и . Отсюда находим среднеквадратические отклонения, значения которых приведены в скобках под уравнением регрессии (2.2).

б) Перейдем к построению линейного регрессионного уравнения в предположении гетероскедастичности случайных регрессионных остатков.

На рис.2.1 хорошо видно, что с ростом доходов (х) вариация, размах отклонений сбережений (у) от линии регрессии () растет пропорционально х, что свидетельствует о гетероскедастичности случайных остатков, т.е., что e*=e× х.

Пусть регрессионная модель имеет вид:

yi = q0 + q1 xi + , где i =1, 2,..., n (2.3)

Предполагается, что =e i × xi - случайная ошибка, линейно зависящая от значений объясняющей переменной xi, e i Î N (0, s2) и Мe i e j =0 при i ¹ j. Тогда Î N (0, s2× ) и М =0 при i ¹ j и i, j= 1, 2,..., n.

В случае модели (2.3) оценку векторов параметров находят с помощью обобщенного МНК. ОМНК - оценка вектора q равна:

q* = (X T V -1 X)-1 X T V -1Y (2.4)

где

 

Поясним алгоритм нахождения оценок (2.4) для нашей двумерной модели (1.3). Разделив левую и правую части уравнения (2.3) на xi, получим:

.

Относительно новых переменных и мы имеем классическую регрессионную модель

параметры которой оцениваются с помощью МНК. МНК-оценка уравнения регрессии имеет вид:

Окончательно уравнение регрессии можно записать:

(2.5)

Уравнение обладает следующими статистическими характеристиками: ; ; .

Сравним статистические характеристики уравнений регрессий, полученных с помощью МНК (2.2) и ОМНК (2.5).

Второе уравнение имеет более точные оценки элементов вектора q, а именно: и

Таким образом, в нашем примере ОМНК-оценки коэффициентов уравнения q0 и q1 оказались точнее, эффективнее.


 







Дата добавления: 2014-11-10; просмотров: 1246. Нарушение авторских прав; Мы поможем в написании вашей работы!




Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...


Теория усилителей. Схема Основная масса современных аналоговых и аналого-цифровых электронных устройств выполняется на специализированных микросхемах...


Логические цифровые микросхемы Более сложные элементы цифровой схемотехники (триггеры, мультиплексоры, декодеры и т.д.) не имеют...

Лечебно-охранительный режим, его элементы и значение.   Терапевтическое воздействие на пациента подразумевает не только использование всех видов лечения, но и применение лечебно-охранительного режима – соблюдение условий поведения, способствующих выздоровлению...

Тема: Кинематика поступательного и вращательного движения. 1. Твердое тело начинает вращаться вокруг оси Z с угловой скоростью, проекция которой изменяется со временем 1. Твердое тело начинает вращаться вокруг оси Z с угловой скоростью...

Условия приобретения статуса индивидуального предпринимателя. В соответствии с п. 1 ст. 23 ГК РФ гражданин вправе заниматься предпринимательской деятельностью без образования юридического лица с момента государственной регистрации в качестве индивидуального предпринимателя. Каковы же условия такой регистрации и...

Внешняя политика России 1894- 1917 гг. Внешнюю политику Николая II и первый период его царствования определяли, по меньшей мере три важных фактора...

Оценка качества Анализ документации. Имеющийся рецепт, паспорт письменного контроля и номер лекарственной формы соответствуют друг другу. Ингредиенты совместимы, расчеты сделаны верно, паспорт письменного контроля выписан верно. Правильность упаковки и оформления....

БИОХИМИЯ ТКАНЕЙ ЗУБА В составе зуба выделяют минерализованные и неминерализованные ткани...

Studopedia.info - Студопедия - 2014-2025 год . (0.011 сек.) русская версия | украинская версия