Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Регрессионная модель среднедушевых сбережений при гетероскедастичности остатков





В табл.2.1 представлены данные (в млн. руб.) о среднедушевых сбережениях (y) и доходах (x) в n =10 семьях. Требуется построить две линейные регрессионные модели, характеризующие зависимость денежных сбережений (y) от среднедушевых доходов (x), соответственно, при соблюдении исходных предпосылок классической регрессионной модели и гетероскедастичности случайных регрессионных остатков. Сравнить точность оценок параметров q 0 и q 1 моделей.

Таблица 2.1.

№ семьи (i)                    
yi (млн.руб) 0, 3 0, 1 2, 2 0, 9 4, 0 1, 7 5, 8 2, 5 7, 5 3, 0
xi (млн.руб) 1, 0 2, 0 3, 0 4, 0 5, 0 6, 0 7, 0 8, 0 9, 0 10, 0

 

Решение. Предварительно представим наши данные графически. На рис. 2.1 представлены на плоскости все наши n =10 наблюдений, а также график линейного уравнения регрессии .

Рис.2.1. Данные о среднедушевых сбережениях (y) и доходах (x)

Из графика следует правомерность выбора линейной регрессионной модели вида:

yi = q0 + q1xi + ei, i = 1, 2,..., n (2.1)

Здесь подлежащий оцениванию вектор неизвестных коэффициентов уравнения имеет вид

а) При построении классической линейной регрессионной модели предполагается, что случайные остатки ei независимы, нормальны и гомоскедастичны, т.е. ei Î N(0, s 2) и М eiej= 0 при i ¹ j и i, j = 1, 2,..., n.

В случае классической регрессионной модели МНК-оценка вектора qопределяется из выражения:

,

где для нашего примера

;

 

тогда

; ; .

и

Тогда оценка уравнения регрессии имеет вид:

(2.2)

 

Найдем несмещенную оценку остаточной дисперсии:

откуда несмещенная оценка среднеквадратического отклонения равна

Оценку ковариационной матрицы вектора определим из выражения:

Таким образом, имеем исправленные оценки дисперсии элементов вектора : и . Отсюда находим среднеквадратические отклонения, значения которых приведены в скобках под уравнением регрессии (2.2).

б) Перейдем к построению линейного регрессионного уравнения в предположении гетероскедастичности случайных регрессионных остатков.

На рис.2.1 хорошо видно, что с ростом доходов (х) вариация, размах отклонений сбережений (у) от линии регрессии () растет пропорционально х, что свидетельствует о гетероскедастичности случайных остатков, т.е., что e*=e× х.

Пусть регрессионная модель имеет вид:

yi = q0 + q1 xi + , где i =1, 2,..., n (2.3)

Предполагается, что =e i × xi - случайная ошибка, линейно зависящая от значений объясняющей переменной xi, e i Î N (0, s2) и Мe i e j =0 при i ¹ j. Тогда Î N (0, s2× ) и М =0 при i ¹ j и i, j= 1, 2,..., n.

В случае модели (2.3) оценку векторов параметров находят с помощью обобщенного МНК. ОМНК - оценка вектора q равна:

q* = (X T V -1 X)-1 X T V -1Y (2.4)

где

 

Поясним алгоритм нахождения оценок (2.4) для нашей двумерной модели (1.3). Разделив левую и правую части уравнения (2.3) на xi, получим:

.

Относительно новых переменных и мы имеем классическую регрессионную модель

параметры которой оцениваются с помощью МНК. МНК-оценка уравнения регрессии имеет вид:

Окончательно уравнение регрессии можно записать:

(2.5)

Уравнение обладает следующими статистическими характеристиками: ; ; .

Сравним статистические характеристики уравнений регрессий, полученных с помощью МНК (2.2) и ОМНК (2.5).

Второе уравнение имеет более точные оценки элементов вектора q, а именно: и

Таким образом, в нашем примере ОМНК-оценки коэффициентов уравнения q0 и q1 оказались точнее, эффективнее.


 







Дата добавления: 2014-11-10; просмотров: 1246. Нарушение авторских прав; Мы поможем в написании вашей работы!




Шрифт зодчего Шрифт зодчего состоит из прописных (заглавных), строчных букв и цифр...


Картограммы и картодиаграммы Картограммы и картодиаграммы применяются для изображения географической характеристики изучаемых явлений...


Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...

Ганглиоблокаторы. Классификация. Механизм действия. Фармакодинамика. Применение.Побочные эфффекты Никотинчувствительные холинорецепторы (н-холинорецепторы) в основном локализованы на постсинаптических мембранах в синапсах скелетной мускулатуры...

Шов первичный, первично отсроченный, вторичный (показания) В зависимости от времени и условий наложения выделяют швы: 1) первичные...

Предпосылки, условия и движущие силы психического развития Предпосылки –это факторы. Факторы психического развития –это ведущие детерминанты развития чел. К ним относят: среду...

Классификация холодных блюд и закусок. Урок №2 Тема: Холодные блюда и закуски. Значение холодных блюд и закусок. Классификация холодных блюд и закусок. Кулинарная обработка продуктов...

ТЕРМОДИНАМИКА БИОЛОГИЧЕСКИХ СИСТЕМ. 1. Особенности термодинамического метода изучения биологических систем. Основные понятия термодинамики. Термодинамикой называется раздел физики...

Травматическая окклюзия и ее клинические признаки При пародонтите и парадонтозе резистентность тканей пародонта падает...

Studopedia.info - Студопедия - 2014-2026 год . (0.013 сек.) русская версия | украинская версия