Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Задача 2. Решить задачу линейного программирования Симплекс методом:





Решить задачу линейного программирования Симплекс методом:

1. Составляем первую укороченную симплекс-таблицу СТ1:

 

БП СП B
           
           
Z -4 -10 -10 -10 -12  

 

Все элементы столбца свободных членов положительные, следовательно, можно применить “Алгоритм 1 Симплекс преобразования на основе укороченных симплекс таблиц”.

 

2. Выбираем разрешающий столбец l соответствующий наименьшему отрицательному элементу в Z строке:

Следовательно,

БП СП B
           
           
Z -4 -10 -10 -10 -12  

3. Выбираем разрешающую строку k, которая соответствует наименьшему положительному из отношений элементов правой части уравнений (элементы столбца B) на соответствующие элементы разрешающего столбца:

 

Следовательно, , так как минимальное положительное отношение соответствует первой строке.

БП СП B
           
           
Z -4 -10 -10 -10 -12  

 

  1. Элемент стоящий на пересечении разрешающего столбца и разрешающей строки называется разрешающим элементом:
  2. Переходим к новой симплекс таблице СТ2 по следующим правилам:
    1. Меняем местами СП и БП соответствующие разрешающему элементу.
БП СП B
           
           
Z            

 

    1. На месте разрешающего элемента в новой таблице стоит величина ему обратная:

БП СП B
         
           
Z            

 

    1. Все элементы разрешающей строки делятся на разрешающее число, включая элемент последнего столбца:
БП СП B
           
Z            

 

    1. Все элементы разрешающего столбца делятся на разрешающее число, включая элемент последней строки, с обратным знаком:
БП СП B
         
Z          

 

    1. Все остальные элементы матрицы вычисляются по формулам:

Например, вычислим некоторые элементы таблицы:

Полученная СТ2 следующая:

БП СП B
Z

 

  1. В Z строке есть отрицательные элементы, следовательно оптимальное решение не найдено и необходимо выполнить симплекс преобразование для СТ2
  2. Рассмотрим СТ2:
БП СП B
Z

 

8. Выбираем разрешающий столбец l, соответствующий наименьшему отрицательному элементу в Z строке:

Следовательно, .

БП СП B
Z

 

 

9. Выбираем разрешающую строку k, которая соответствует наименьшему положительному из отношений элементов правой части уравнений (элементы столбца B) на соответствующие элементы разрешающего столбца:

 

Следовательно, , так как минимальное положительное отношение соответствует второй строке.

БП СП B
Z

 

10. Элемент стоящий на пересечении разрешающего столбца и разрешающей строки называется разрешающим элементом:

  1. Переходим к новой симплекс таблице СТ2 по следующим правилам:
    1. Меняем местами СП и БП соответствующие разрешающему элементу.

 

БП СП B
           
           
Z            

 

    1. На месте разрешающего элемента в новой таблице стоит величина ему обратная:
БП СП B
           
         
Z            

 

    1. Все элементы разрешающей строки делятся на разрешающее число, включая элемент последнего столбца:
БП СП B
           
 
Z            

 

 

    1. Все элементы разрешающего столбца делятся на разрешающее число, включая элемент последней строки, с обратным знаком:
БП СП B
         
 
Z            

 

 

    1. Все остальные элементы матрицы вычисляются по формулам:

Например, вычислим некоторые элементы таблицы:

Полученная СТ2 следующая:

БП СП B
 
 
Z            

 

12. В Z строке нет отрицательных элементов, следовательно, оптимальное решение найдено и максимум целевой функции для заданной системы ограничений равен 20 при этом , (см столбце свободных членов).

13. Также необходимо определить при каких значениях достигается максимум целевой функции. Для этого необходимо решить следующую систему уравнений:

Данная система имеет решение только при

Ответ: Zmax=20 , ,

 

 







Дата добавления: 2014-11-10; просмотров: 695. Нарушение авторских прав; Мы поможем в написании вашей работы!




Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...

Этапы трансляции и их характеристика Трансляция (от лат. translatio — перевод) — процесс синтеза белка из аминокислот на матрице информационной (матричной) РНК (иРНК...

Условия, необходимые для появления жизни История жизни и история Земли неотделимы друг от друга, так как именно в процессах развития нашей планеты как космического тела закладывались определенные физические и химические условия, необходимые для появления и развития жизни...

Метод архитекторов Этот метод является наиболее часто используемым и может применяться в трех модификациях: способ с двумя точками схода, способ с одной точкой схода, способ вертикальной плоскости и опущенного плана...

Устройство рабочих органов мясорубки Независимо от марки мясорубки и её технических характеристик, все они имеют принципиально одинаковые устройства...

Ведение учета результатов боевой подготовки в роте и во взводе Содержание журнала учета боевой подготовки во взводе. Учет результатов боевой подготовки - есть отражение количественных и качественных показателей выполнения планов подготовки соединений...

Сравнительно-исторический метод в языкознании сравнительно-исторический метод в языкознании является одним из основных и представляет собой совокупность приёмов...

Studopedia.info - Студопедия - 2014-2024 год . (0.01 сек.) русская версия | украинская версия