Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Задача 4. Для заданной задачи линейного программирования составить двойственную задачу Линейного программирования и решить ее Симплекс методом:





Для заданной задачи линейного программирования составить двойственную задачу Линейного программирования и решить ее Симплекс методом:

Решение

1. Для заданной задачи Линейного программирования Двойственная Задача Линейного программирования выглядит следующим образом:

 

2. Строим симплекс таблицу для заданной двойственной задачи Линейного программирования

СП БП C
  -1   -1
-2     -2
T        

 

2 Выбираем разрешающую строку k, соответствующую наименьшему отрицательному элементу в С столбце

Следовательно, k =2.

СП БП C
  -1   -1
-2     -2
T        

 

3. Выбираем разрешающий столбец l, который соответствует наименьшему положительному из отношений элементов T-строки на соответствующие элементы разрешающей строки:

Следовательно, l =2.

СП БП C
  -1   -1
-2     -2
T        

 

4. Элемент стоящий на пересечении разрешающего столбца и разрешающей строки называется разрешающим элементом: 2

  1. Переходим к новой симплекс таблице по следующим правилам:
    1. Меняем местами СП и БП соответствующие разрешающему элементу.

 

СП БП C
       
       
T        

 

    1. На месте разрешающего элемента в новой таблице стоит величина ему обратная:
СП БП C
       
     
T        

 

 

c. Все элементы разрешающей строки делятся на разрешающее число с обратным знаком, включая элемент последнего столбца:

СП БП C
       
  -1  
T        

 

 

    1. Все элементы разрешающего столбца делятся на разрешающее число, включая элемент последней строки:

СП БП C
     
  -1  
T        

 

 

    1. Все остальные элементы матрицы вычисляются по формулам:

Например, вычислим некоторые элементы таблицы:

 

Полученная СТ2 следующая:

СП БП C
    -2
  -1  
T        

 

6. В С столбце есть отрицательные элементы (-2), поэтому оптимальное решение не найдено и необходимо сделать еще одно симплекс преобразование.

7. Выбираем разрешающую строку k, соответствующую наименьшему отрицательному элементу в С столбце

Следовательно, k =1.

СП БП C
    -2
  -1  
T        

 

8. Выбираем разрешающий столбец l, который соответствует наименьшему положительному из отношений элементов T-строки на соответствующие элементы разрешающей строки:

Следовательно, l =3.

СП БП C
    -2
  -1  
T        

 

9. Элемент стоящий на пересечении разрешающего столбца и разрешающей строки называется разрешающим элементом:

  1. Переходим к новой симплекс таблице по следующим правилам:
    1. Меняем местами СП и БП соответствующие разрешающему элементу.
СП БП C
       
       
T        

 

b. На месте разрешающего элемента в новой таблице стоит величина ему обратная:

СП БП C
     
       
T        

 

 

c. Все элементы разрешающей строки делятся на разрешающее число с обратным знаком, включая элемент последнего столбца:

СП БП C
       
T        

 

 

d. Все элементы разрешающего столбца делятся на разрешающее число, включая элемент последней строки:

СП БП C
     
T        

 

e. Все остальные элементы матрицы вычисляются по формулам:

Например, вычислим некоторые элементы таблицы:

 

Полученная СТ3 следующая:

СП БП C
T        

 

11. Все элементы С столбца положительные, следовательно оптимальное решение найдено.

12. Введем соответствие между СП и БП Прямой и Двойственных задач Линейного программирования

 

СП     БП
   
   
   
БП     СП

Транспонируя симплекс таблицу для двойственной задачи ЛП и вводя переменный xi вместо переменных (±yi), получаем оптимальный план решения прямой задачи – необходимо смотреть соответствующие значения в столбце свободных членов.

 

СП БП B
 
Z  

 

Таким образом, оптимальное решение – максимум целевой функции Z =8 - достигается при , Это полностью совпадает с результатом решения прямой задачи Линейного Программирования (см. Задачу 1)

 

Ответ: Zmax=8 при этом ,


 







Дата добавления: 2014-11-10; просмотров: 779. Нарушение авторских прав; Мы поможем в написании вашей работы!




Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...

БИОХИМИЯ ТКАНЕЙ ЗУБА В составе зуба выделяют минерализованные и неминерализованные ткани...

Типология суицида. Феномен суицида (самоубийство или попытка самоубийства) чаще всего связывается с представлением о психологическом кризисе личности...

ОСНОВНЫЕ ТИПЫ МОЗГА ПОЗВОНОЧНЫХ Ихтиопсидный тип мозга характерен для низших позвоночных - рыб и амфибий...

Различия в философии античности, средневековья и Возрождения ♦Венцом античной философии было: Единое Благо, Мировой Ум, Мировая Душа, Космос...

Характерные черты немецкой классической философии 1. Особое понимание роли философии в истории человечества, в развитии мировой культуры. Классические немецкие философы полагали, что философия призвана быть критической совестью культуры, «душой» культуры. 2. Исследовались не только человеческая...

Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит...

Studopedia.info - Студопедия - 2014-2025 год . (0.015 сек.) русская версия | украинская версия