Определение внутренних усилий методом сечений. Напряжения
Метод сечений заключается в том, что тело мысленно рассекается плоскостью на две части, любая из которых отбрасывается, и взамен нее к сечению оставшейся части прикладываются внутренние силы, действовавшие до разреза; оставленная часть рассматривается как самостоятельное тело, находящееся в равновесии под действием внешних и приложенных к сечению внутренних сил. Метод сечений основан на третьем законе Ньютона.
Рис. 1.1.
Применяя к оставленной части тела условия равновесия, мы сможем найти равнодействующие этих сил. Основным расчетным объектом в сопротивлении материалов является брус. Рассмотрим, каковы будут статические равнодействующие внутренних сил в поперечном сечении бруса. Рассечем брус (рис. 1.1) поперечным сечением а-а и рассмотрим равновесие его левой части. Если внешние силы, действующие на брус, лежат в одной плоскости, то в общем случае статическими равнодействующими внутренних сил, действующих в сечении а-а, будут главный вектор Fгл, приложенный в центре тяжести сечения, и главный момент уравновешивающие плоскую систему внешних сил, приложенных к оставленной части бруса. Разложим главный вектор на составляющую N, направленную вдоль оси бруса, и составляющую Q, перпендикулярную этой оси, т. е. лежащую в плоскости поперечного сечения. Эти составляющие главного вектора вместе с главным моментом назовем внутренними силовыми факторами, действующими в сечении бруса. Составляющую N назовем продольной силой, составляющую Q - поперечной силой, пару сил с моментом - изгибающим моментом. Для определения указанных трех внутренних силовых факторов статика дает три уравнения равновесия оставленной части бруса, а именно:
(ось z всегда направляем по оси бруса). Если внешние силы, действующие на брус, не лежат в одной плоскости, т. е. представляют собой пространственную систему сил, то в общем случае в поперечном сечении бруса возникают шесть внутренних силовых факторов (рис. 1.2), для определения которых статика дает шесть уравнений равновесия:
Рис. 1.2.
Шесть внутренних силовых факторов, возникающих в поперечном сечении бруса в самом общем случае, носят следующие названия: N - продольная сила; - поперечные силы; - крутящий момент, изгибающие моменты. При разных деформациях в поперечном сечении бруса возникают различные внутренние силовые факторы. Рассмотрим частные случаи. 1. В сечении возникает только продольная cилa N, в этом случае это деформация растяжения (если сила направлена от сечения) или деформация сжатия (если сила N направлена к сечению). 2. В сечении возникает только поперечная сила Q, в этом случае это деформация сдвига. 3. В сечении возникает только крутящий момент , в этом случае это деформация кручения. 4. В сечении возникает только изгибающий момент , в этом случае это деформация чистого изгиба. Если в сечении одновременно возникает изгибающий момент и поперечная сила Q, то изгиб называют поперечным. 5. Если в сечении одновременно возникает несколько внутренних силовых факторов (например, изгибающий и крутящий моменты или изгибающий момент и продольная сила), то в этих случаях имеет место сочетание основных деформаций (сложное сопротивление). Одним из основных понятий в сопротивлении материалов является напряжение. Напряжение характеризует интенсивность внутренних сил, действующих в сечении, т.е. нагрузку, приходящуюся на единицу площади. Рассмотрим какой-либо произвольно нагруженный брус и применим к нему метод сечений (рис. 1.3). Выделим в сечении бесконечно малый элемент площади Ввиду малости этого элемента можно считать, что в его пределах внутренние силы, приложенные в различных точках, одинаковы по модулю и направлению и, следовательно, представляют собой систему параллельных сил. Равнодействующую этой системы обозначим Разделив dF на площадь элементарной площадки dA, определим интенсивность внутренних сил, т. е. напряжение вточках элементарной площадки dA, . Таким образом, напряжение естьвнутренняя сила, отнесенная к единице площади сечения. Напряжение есть величина векторная. Единица напряжения:
= Паскаль (Па).
Pис. 1.3.
Поскольку эта единица напряжения очень мала, то мы будем применять более крупную кратную единицу, а именно мегапаскаль (МПа):
Разложим вектор напряжения на две составляющие: - перпендикулярную плоскости сечения и - лежащую в плоскости сечения (см. рис. 1.3). Эти составляющие назовем так: - нормальное напряжение, - касательное напряжение. Так как угол между нормальным и касательным напряжениями всегда равен 90°, то модуль полного напряжения определится по формуле: .
|