Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Классическое определение вероятности. Вероятностью события А называется отношение числа благоприятствующих этому событию исходов к общему числу всех простых





Вероятностью события А называется отношение числа благоприятствующих этому событию исходов к общему числу всех простых, попарно несовместных, единственно возможных и равновозможных исходов испытания:

Возможны случаи:

1. - вероятность достоверного события;

2. - вероятность невозможного события;

3. - вероятность случайного события.

Вероятность события есть неотрицательное число из интервала [0, 1]

.

Пример 1.1. В урне находятся 12 белых и 6 красных шаров. Какова вероятность того, что наудачу вынутый шар будет белым?

Решение: Пусть A - событие, состоящее в том, что вынутый шар белый.

=12+6=18 - число всех равновозможных исходов опыта;

=12 – число исходов, благоприятствующих событию .

Следовательно, по формуле ;

.

Пример 1.2. При перевозке ящика, в котором содержались 31 стандартная и 10 нестандартных деталей, утеряна одна деталь, причем неизвестно, какая. После перевозки наудачу извлечена одна деталь, она оказалась стандартной. Найти вероятность того, что была утеряна:

а) стандартная деталь;

б) нестандартная деталь.

Решение:

а) извлеченная стандартная деталь, очевидно, не могла быть утеряна, могла быть потеряна любая из остальных деталей n= (31-1+10)=40;

среди них стандартных m= (31-1)=30;

Таким образом, ;

б) среди n= 40 деталей, каждая из которых могла быть утеряна, было 10 нестандартных, т.е. m= 10, тогда .

Задания для самостоятельной работы:

1. Брошены две игральные кости. Найти вероятность того, что сумма выпавших очков равна 5.

2. Найти вероятность того, что в наудачу написанном двузначном числе цифры разные.

3. Набирая номер телефона, абонент забыл две последние цифры и набрал их наудачу. Найти вероятность того, что набраны нужные цифры.

 

В задачах на классическое определение вероятности для вычисления числа благоприятствующих рассматриваемому событию исходов или общего числа элементарных исходов используются формулы комбинаторики.

1. Размещения, если комбинации отличаются не только составом элементов, но и порядком их следования. Их число находится по формуле:

2. Сочетания – это комбинации, которые отличаются друг от друга хотя бы одним элементом. Их число определяется по формуле:

3. Перестановки – это комбинации из n элементов по n, которые отличаются только порядком расположения элементов. Их число определяется по формуле:

4. Если при выборе m элементов из n элементы возвращаются обратно и упорядочиваются, то говорят, что это размещение с повторениями. Их число вычисляется по формуле:

Пример 1.3. В группе студентов 10 учебных предметов и 5 различных занятий в день. Сколькими способами могут быть распределены занятия в один день?

Решение: n= 10; m= 5

Пример 1.4. В группе 25 студентов. На профсоюзное собрание выбирают делегацию из 3 человек. Сколькими способами может быть выбрана эта тройка?

Решение:

Пример 1.5. Сколькими способами можно разместить 6 человек за столом, на котором поставлено 6 приборов.

Решение:

Пример 1.6. Сколько пятизначных чисел можно составить, используя цифры:

а) 2, 5, 7, 8 б) 0, 1, 9?

Решение:

а) ;

б) если пятизначное число состоит из цифр 0, 1, 9, то первую цифру можно выбирать двумя способами, каждую из оставшихся можно выбирать тремя способами. Согласно правилу вычисления можно записать:

,

или .







Дата добавления: 2014-11-10; просмотров: 2468. Нарушение авторских прав; Мы поможем в написании вашей работы!




Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...


Теория усилителей. Схема Основная масса современных аналоговых и аналого-цифровых электронных устройств выполняется на специализированных микросхемах...

Трамадол (Маброн, Плазадол, Трамал, Трамалин) Групповая принадлежность · Наркотический анальгетик со смешанным механизмом действия, агонист опиоидных рецепторов...

Мелоксикам (Мовалис) Групповая принадлежность · Нестероидное противовоспалительное средство, преимущественно селективный обратимый ингибитор циклооксигеназы (ЦОГ-2)...

Менадиона натрия бисульфит (Викасол) Групповая принадлежность •Синтетический аналог витамина K, жирорастворимый, коагулянт...

Неисправности автосцепки, с которыми запрещается постановка вагонов в поезд. Причины саморасцепов ЗАПРЕЩАЕТСЯ: постановка в поезда и следование в них вагонов, у которых автосцепное устройство имеет хотя бы одну из следующих неисправностей: - трещину в корпусе автосцепки, излом деталей механизма...

Понятие метода в психологии. Классификация методов психологии и их характеристика Метод – это путь, способ познания, посредством которого познается предмет науки (С...

ЛЕКАРСТВЕННЫЕ ФОРМЫ ДЛЯ ИНЪЕКЦИЙ К лекарственным формам для инъекций относятся водные, спиртовые и масляные растворы, суспензии, эмульсии, ново­галеновые препараты, жидкие органопрепараты и жидкие экс­тракты, а также порошки и таблетки для имплантации...

Studopedia.info - Студопедия - 2014-2024 год . (0.008 сек.) русская версия | украинская версия