Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Построение линии пересечения второго порядка (частные случаи)





В некоторых случаях кривая, которая получается при пересечении поверхностей вращения, распадается на две плоские кривые, т.е. на кривые второго порядка. Условия, при которых происходит распадение линии пересечения на две плоские кривые, оговариваются в трех теоремах:

Рисунок 76 – Теорема 1

Теорема 1. Если две поверхности вращения (второго порядка) пересекаются по одной плоской кривой, то они пересекаются и еще по одной плоской кривой (рисунок 76).

 

 

Рисунок 77 – Теорема 2

Теорема 2. Если две поверхности второго порядка имеют касание в двух точках, то линия их пересечения распадается на две кривые второго порядка, плоскости которых проходят через прямую, соединяющую точки касания (рисунок 77).

На рисунке показано пересечение двух цилиндров второго порядка. Эти поверхности имеют две общие точки касания 1 и 2. Поэтому по теореме 2 они пересекаются по двум кривым второго порядка.

Теорема 3 (Теорема Монжа). Если две поверхности второго порядка описаны вокруг сферы (или вписаны в нее), то линия их пересечения распадается на две плоские кривые второго порядка, плоскости которых проходят через прямую, соединяющую точки пересечения линий касания (рисунок 78).

 

Рисунок 78 – Теорема 3

На рисунке 78 заданы две поверхности вращения (конус и цилиндр), описанные вокруг сферы Æ;.

1. На основании теоремы Монжа искомая линия пересечения распалась на две плоские кривые второго порядка, плоскости которых проходят через прямую KL, соединяющую точки пересечения линий (a) касания сферы Æ и конуса W и (b) – касания сферы Æ и цилиндра y.

2. Опорные точки: 1 и 2 – экстремальные (они же очерковые относительно П2); 3 и – очерковые относительно П1 (они же точки смены видимости на П1)

3. Промежуточные точки найдены из условия принадлежности.

4. Найденные точки соединены плавной кривой с учетом видимости.

 

 







Дата добавления: 2014-11-10; просмотров: 2221. Нарушение авторских прав; Мы поможем в написании вашей работы!




Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...


Теория усилителей. Схема Основная масса современных аналоговых и аналого-цифровых электронных устройств выполняется на специализированных микросхемах...

Постинъекционные осложнения, оказать необходимую помощь пациенту I.ОСЛОЖНЕНИЕ: Инфильтрат (уплотнение). II.ПРИЗНАКИ ОСЛОЖНЕНИЯ: Уплотнение...

Приготовление дезинфицирующего рабочего раствора хлорамина Задача: рассчитать необходимое количество порошка хлорамина для приготовления 5-ти литров 3% раствора...

Дезинфекция предметов ухода, инструментов однократного и многократного использования   Дезинфекция изделий медицинского назначения проводится с целью уничтожения патогенных и условно-патогенных микроорганизмов - вирусов (в т...

Подкожное введение сывороток по методу Безредки. С целью предупреждения развития анафилактического шока и других аллергических реак­ций при введении иммунных сывороток используют метод Безредки для определения реакции больного на введение сыворотки...

Принципы и методы управления в таможенных органах Под принципами управления понимаются идеи, правила, основные положения и нормы поведения, которыми руководствуются общие, частные и организационно-технологические принципы...

ПРОФЕССИОНАЛЬНОЕ САМОВОСПИТАНИЕ И САМООБРАЗОВАНИЕ ПЕДАГОГА Воспитывать сегодня подрастающее поколение на со­временном уровне требований общества нельзя без по­стоянного обновления и обогащения своего профессио­нального педагогического потенциала...

Studopedia.info - Студопедия - 2014-2025 год . (0.014 сек.) русская версия | украинская версия