Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Характеристики, вводимые для описания затухающих колебаний






 

Рассмотрим кратко величины, вводимые для описания затухающих колебаний.

1.Критическое сопротивление контура (критический коэффициент сопротивления среды ). Критическое сопротивление контура – это такое сопротивление, при котором в контуре начинается апериодический разряд. В этом случае колебания в контуре отсутствуют, заряд на обкладках конденсатора убывает монотонно до нуля (кривая 1 на рис. 5.16), или, пройдя один раз положение равновесия, заряд конденсатора в итоге монотонно будет убывать до нуля (кривая 2 на рис. 5.16).

Рис. 5.16

Убывание заряда , смещения тела в механической системе по кривым 1 или 2, либо по кривой, расположенной между ними, зависит от начальных условий. Например, если поместить физический маятник в жидкую вязкую среду и, отклонив его от положения равновесия, отпустить без начальной скорости, то тогда смещение маятника будет изменяться по кривой 1 (рис. 5.16,б). Если же отпустить маятник с начальной скоростью, направленной к положению равновесия, то тогда его смещение может со временем изменяться по кривой 2 (рис. 5.16,б), т.е. он пройдет один раз положение равновесия, затем отклонится, и после этого в итоге будет монотонно приближаться к положению равновесия.

Выведем формулу для критического сопротивления контура через параметры контура L и C. При увеличении сопротивления угловая частота затухающих колебаний будет уменьшаться, а период колебаний ТЗ будет возрастать, и для сопротивления , равного , можно записать

: , ,

. (5.51)

Для в контуре наблюдается апериодический разряд, а при в контуре происходят затухающие колебания.

По таблице аналогий (см. табл. 5.1) для критического коэффициента сопротивления среды можно записать (L® m, 1/С ® к)

. (5.52)

2. Время релаксации τ – это время, в течение которого амплитуда колебаний убывает в e раз (e-основание натурального логарифма):

, . (5.53)

За время релаксации в системе совершается Ne полных колебаний:

(5.54)

3. Логарифмический декремент затухания δ равен натуральному логарифму отношения двух амплитуд, взятых через период:

. (5.55)

4. Добротность Q системыможно ввести как величину, определяющую потери энергии колебаний системы за один условный период колебаний,

. (5.56)

Полная энергия колебаний пропорциональна квадрату амплитуды колебаний и поэтому выражение (5.56) можно записать в следующем виде:

. (5.57)

Из формулы (5.56) следует, что чем выше добротность Q системы, тем медленнее в ней затухают колебания.

Приведем ориентировочные значения Q для различных систем:

1) колебательный контур на радиочастотах ( ~ 106 рад/с): Q ~ 100; 2) полый резонатор диапазона сверхвысоких частот (ω ~ 1011 рад/с): Q ~ 105; 3) камертон: Q ~ 104; 4) колебания кварцевой пластины: Q ~ 105; 5) излучение атома как колебательной системы: Q ~ 107.

Как видно, для применяемых на практике систем Q ³ 100, т.е. для них выполняются условия малого затухания:

.

Тогда из формулы (5.57) получим ( )

. (5.58)

Для добротности механической системы и колебательного контура из формулы (5.58) в условиях малого затухания можно получить следующие формулы:

, . (5.59)







Дата добавления: 2014-11-10; просмотров: 6398. Нарушение авторских прав; Мы поможем в написании вашей работы!



Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...

Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...

Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...

Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...

Основные структурные физиотерапевтические подразделения Физиотерапевтическое подразделение является одним из структурных подразделений лечебно-профилактического учреждения, которое предназначено для оказания физиотерапевтической помощи...

Почему важны муниципальные выборы? Туристическая фирма оставляет за собой право, в случае причин непреодолимого характера, вносить некоторые изменения в программу тура без уменьшения общего объема и качества услуг, в том числе предоставлять замену отеля на равнозначный...

Тема 2: Анатомо-топографическое строение полостей зубов верхней и нижней челюстей. Полость зуба — это сложная система разветвлений, имеющая разнообразную конфигурацию...

Подкожное введение сывороток по методу Безредки. С целью предупреждения развития анафилактического шока и других аллергических реак­ций при введении иммунных сывороток используют метод Безредки для определения реакции больного на введение сыворотки...

Принципы и методы управления в таможенных органах Под принципами управления понимаются идеи, правила, основные положения и нормы поведения, которыми руководствуются общие, частные и организационно-технологические принципы...

ПРОФЕССИОНАЛЬНОЕ САМОВОСПИТАНИЕ И САМООБРАЗОВАНИЕ ПЕДАГОГА Воспитывать сегодня подрастающее поколение на со­временном уровне требований общества нельзя без по­стоянного обновления и обогащения своего профессио­нального педагогического потенциала...

Studopedia.info - Студопедия - 2014-2022 год . (0.017 сек.) русская версия | украинская версия