Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Основные числовые множества





В процессе получения количественных результатов мы постоянно имеем дело с множествами чисел. Приведем классификацию числовых множеств:

1. Натуральные числа N={n} ={1; 2; 3; …; n; …}.

2. Неотрицательные числа .

3. Целые числа .

4. Рациональные числа , где .

5. Действительные числа , полная совокупность рациональных и иррациональных чисел.

Очевидно: , т.е. каждое числовое множество является подмножеством следующего.

Все эти числовые множества обладают свойством упорядоченности, т.е. для любых двух элементов a и b любого множества можно указать, что либо , либо . Для трех различных элементов a, b и c выполняется свойство транзитивности: из и следует, что .

Ясно, что все числовые множества – бесконечны, причем N, , Z и Q – счетные (т.е. элементы этих множеств можно перенумеровать), R – несчетное множество.

При практических расчетах мы достаточно часто имеем дело не со всем числовым множеством, а с его некоторой частью, т.е. подмножеством. Изображение подмножеств числовых множеств удобно иллюстрировать с помощью числовой оси, которая в этом случае является вариантом диаграммы Эйлера-Венна. Напомним, что числовой осью называется линия (чаще всего – прямая), на которой указаны: начало отсчета, направление отсчета и единица измерения. Для удобства примем, что если конец интервала является элементом описываемого множества, то он обозначается кружочком, а если нет, то – крестиком. Тогда основные типы интервалов определяются следующим образом:

 

(a, b) или ограниченный открытый интервал (или открытый промежуток), концы a и b не принадлежат данному множеству точек;
или , или , аналогично или , или неограниченные открытые интервалы;
или ограниченный замкнутый интервал, концы a и b принадлежат данному множеству точек (другие названия: отрезок, сегмент, замкнутый промежуток);
или полуоткрытый интервал. И другие аналогичные варианты. Легко заметить, что квадратная скобка соответствует нестрогому знаку неравенства £ или ³, а круглая скобка – строгому знаку < или >.

 

Для оценивания множеств на практике удобно использовать дополнительные характеристики. Пусть A – произвольное, но не пустое множество. Число называется максимумом множества A, если и любые другие элементы множества не превосходят этого числа: . Аналогично определяется и минимум множества .

Множество A называется ограниченным сверху, если существует число k, такое, что для всех элементов множества справедливо . Это число назовем верхней гранью (или мажорантой) множества A. Минимально возможное значение k называется точной верхней гранью множества A и обозначается (supremum A).

Множество A называется ограниченным снизу, если существует число p, такое, что что для всех элементов множества справедливо . Это число назовем нижней гранью (или минорантой) множества A. Максимально возможное значение p называется точной нижней гранью множества A и обозначается (infimum A).

 

 







Дата добавления: 2014-10-22; просмотров: 1066. Нарушение авторских прав; Мы поможем в написании вашей работы!




Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...

Ситуация 26. ПРОВЕРЕНО МИНЗДРАВОМ   Станислав Свердлов закончил российско-американский факультет менеджмента Томского государственного университета...

Различия в философии античности, средневековья и Возрождения ♦Венцом античной философии было: Единое Благо, Мировой Ум, Мировая Душа, Космос...

Характерные черты немецкой классической философии 1. Особое понимание роли философии в истории человечества, в развитии мировой культуры. Классические немецкие философы полагали, что философия призвана быть критической совестью культуры, «душой» культуры. 2. Исследовались не только человеческая...

Основные разделы работы участкового врача-педиатра Ведущей фигурой в организации внебольничной помощи детям является участковый врач-педиатр детской городской поликлиники...

Ученые, внесшие большой вклад в развитие науки биологии Краткая история развития биологии. Чарльз Дарвин (1809 -1882)- основной труд « О происхождении видов путем естественного отбора или Сохранение благоприятствующих пород в борьбе за жизнь»...

Этапы трансляции и их характеристика Трансляция (от лат. translatio — перевод) — процесс синтеза белка из аминокислот на матрице информационной (матричной) РНК (иРНК...

Studopedia.info - Студопедия - 2014-2025 год . (0.013 сек.) русская версия | украинская версия