Несобственные интегралы. 7.1.Несобственный интеграл первого рода
7.1.Несобственный интеграл первого рода
Определение 1. Пусть для любого с > a функция f (x) интегрируема на отрезке [ a; с ]. Если существует , то он называется несобственным интегралом первого рода функции f (x) и обозначается . В этом случае также говорят, что интеграл сходится. Если указанный предел не существует, то интеграл расходится. Аналогично определяется несобственный интеграл первого рода . Если оба интеграла и сходятся, то говорят, что сходится интеграл = + . Примеры. 1) = = = = . Аналогично = . А это означает, что тоже сходится и равен p. 2) = = = . Этот предел не существует, поэтому интеграл расходится. 3) = = , если k ¹ 1. Этот предел существует и равен , если k > 1. Если же k < 1, то предел равен бесконечности – интеграл расходится. Интеграл тоже расходится: = =¥. Итак, интеграл сходится тогда и только тогда, когда k > 1.·
7.2.Несобственный интеграл второго рода
Определение 2. Пусть функция f (x) не ограничена на отрезке [ a; b ], но для любого e> 0 f (x) интегрируема на отрезке [ a; b –e]. Если существует , то он называется несобственным интегралом второго рода функции f (x) и обозначается . В этом случае также говорят, что интеграл сходится. Если указанный предел не существует, то интеграл расходится. Аналогично определяется несобственный интеграл второго рода, если функция f (x) не ограничена на отрезке [ a; b ], но интегрируема на отрезке [ a +e; b ] для любого e> 0. Примеры. 1) = = = . Аналогично = = = . Поэтому =p. 2) = + . Каждое слагаемое – несобственный интеграл второго рода. Рассмотрим первый из них: = = == . Аналогично = = = = . Значит, = = . 3) = = , если k ¹ 1. Этот предел существует и равен , если k < 1. Если же k > 1, то предел равен бесконечности – интеграл расходится. Интеграл тоже расходится: = =¥. Итак, интеграл сходится тогда и только тогда, когда k < 1.·
7.3.Признаки сходимости несобственных интегралов
Примем без доказательства следующие признаки сходимости несобственных интегралов – так называемые признаки сравнения. 1. Пусть для любого с > a функции f (x) и g (x) интегрируемы на отрезке [ a; с ], причем 0£ f (x)£ g (x) при х ³ a. Тогда, если интеграл сходится, то и интеграл сходится, а если интеграл расходится, то и интеграл расходится. 2. Пусть для любого с > a функции f (x) и g (x) положительны и интегрируемы на отрезке [ a; с ]. Если существует ¹ 0, то интегралы и сходятся или расходятся одновременно. Следствие 1. Если существует ¹ 0, то интеграл сходится тогда и только тогда, когда k > 1. 3. Пусть для любого e> 0 функции f (x) и g (x) интегрируемы на отрезке [ a; b –e], причем 0£ f (x)£ g (x) при a £ х < b. Тогда, если интеграл сходится, то и интеграл сходится, а если интеграл расходится, то и интеграл расходится. 4. Пусть для любого e> 0 функции f (x) и g (x) положительны и интегрируемы на отрезке [ a; b –e]. Если существует ¹ 0, то интегралы и сходятся или расходятся одновременно. Следствие 2. Если существует ¹ 0, то интеграл сходится тогда и только тогда, когда k < 1. Примеры. 1) Рассмотрим . Поскольку 0< < при x ³ 1, а интеграл сходится (так как показатель 10 больше 1), то по первому признаку сравнения исходный интеграл сходится. 2) Рассмотрим . Поскольку при x ®0 подынтегральная функция эквивалентна дроби , то есть эквивалентна дроби = , а интеграл сходится (так как показатель меньше 1), то по четвертому признаку сравнения исходный интеграл сходится. 3) Рассмотрим . Если 0£ х < 1, то 0£ £ £ . Интеграл = – сходится (так как показатель меньше 1). Значит, по третьему признаку сравнения исходный интеграл сходится. 4) Рассмотрим . Поскольку при x ®¥ подынтегральная функция эквивалентна дроби , а интеграл расходится, то по второму признаку сравнения исходный интеграл расходится.·
|