Студопедия — Несобственные интегралы. 7.1.Несобственный интеграл первого рода
Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Несобственные интегралы. 7.1.Несобственный интеграл первого рода






7.1.Несобственный интеграл первого рода

 

Определение 1. Пусть для любого с > a функция f (x) интегрируема на отрезке [ a; с ]. Если существует , то он называется несобственным интегралом первого рода функции f (x) и обозначается . В этом случае также говорят, что интеграл сходится. Если указанный предел не существует, то интеграл расходится.

Аналогично определяется несобственный интеграл первого рода . Если оба интеграла и сходятся, то говорят, что сходится интеграл = + .

Примеры. 1) = = = = .

Аналогично = . А это означает, что тоже сходится и равен p.

2) = = = . Этот предел не существует, поэтому интеграл расходится.

3) = = , если k ¹ 1. Этот предел существует и равен , если k > 1. Если же k < 1, то предел равен бесконечности – интеграл расходится. Интеграл тоже расходится: = =¥. Итак, интеграл сходится тогда и только тогда, когда k > 1.·

 

7.2.Несобственный интеграл второго рода

 

Определение 2. Пусть функция f (x) не ограничена на отрезке [ a; b ], но для любого e> 0 f (x) интегрируема на отрезке [ a; b –e]. Если существует , то он называется несобственным интегралом второго рода функции f (x) и обозначается . В этом случае также говорят, что интеграл сходится. Если указанный предел не существует, то интеграл расходится.

Аналогично определяется несобственный интеграл второго рода, если функция f (x) не ограничена на отрезке [ a; b ], но интегрируема на отрезке [ a +e; b ] для любого e> 0.

Примеры. 1) = = = . Аналогично = = = .

Поэтому =p.

2) = + . Каждое слагаемое – несобственный интеграл второго рода. Рассмотрим первый из них: = = == . Аналогично = =

= = . Значит, =

= .

3) = = , если k ¹ 1. Этот предел существует и равен , если k < 1. Если же k > 1, то предел равен бесконечности – интеграл расходится. Интеграл тоже расходится: = =¥. Итак, интеграл сходится тогда и только тогда, когда k < 1.·

 

7.3.Признаки сходимости несобственных интегралов

 

Примем без доказательства следующие признаки сходимости несобственных интегралов – так называемые признаки сравнения.

1. Пусть для любого с > a функции f (x) и g (x) интегрируемы на отрезке [ a; с ], причем 0£ f (xg (x) при х ³ a. Тогда, если интеграл сходится, то и интеграл сходится, а если интеграл расходится, то и интеграл расходится.

2. Пусть для любого с > a функции f (x) и g (x) положительны и интегрируемы на отрезке [ a; с ]. Если существует ¹ 0, то интегралы и сходятся или расходятся одновременно.

Следствие 1. Если существует ¹ 0, то интеграл сходится тогда и только тогда, когда k > 1.

3. Пусть для любого e> 0 функции f (x) и g (x) интегрируемы на отрезке [ a; b –e], причем 0£ f (xg (x) при a £ х < b. Тогда, если интеграл сходится, то и интеграл сходится, а если интеграл расходится, то и интеграл расходится.

4. Пусть для любого e> 0 функции f (x) и g (x) положительны и интегрируемы на отрезке [ a; b –e]. Если существует ¹ 0, то интегралы и сходятся или расходятся одновременно.

Следствие 2. Если существует ¹ 0, то интеграл сходится тогда и только тогда, когда k < 1.

Примеры. 1) Рассмотрим . Поскольку

0< < при x ³ 1, а интеграл сходится (так как

показатель 10 больше 1), то по первому признаку сравнения исходный интеграл сходится.

2) Рассмотрим . Поскольку при x ®0 подынтегральная функция эквивалентна дроби , то есть эквивалентна дроби = , а интеграл сходится (так как показатель меньше 1), то по четвертому признаку сравнения исходный интеграл сходится.

3) Рассмотрим . Если 0£ х < 1, то 0£ £ £ . Интеграл = – сходится (так как показатель меньше 1). Значит, по третьему признаку сравнения исходный интеграл сходится.

4) Рассмотрим . Поскольку при x ®¥ подынтегральная функция эквивалентна дроби , а интеграл расходится, то по второму признаку сравнения исходный интеграл расходится.·

 







Дата добавления: 2014-11-12; просмотров: 601. Нарушение авторских прав; Мы поможем в написании вашей работы!



Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...

Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...

ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...

Теория усилителей. Схема Основная масса современных аналоговых и аналого-цифровых электронных устройств выполняется на специализированных микросхемах...

Устройство рабочих органов мясорубки Независимо от марки мясорубки и её технических характеристик, все они имеют принципиально одинаковые устройства...

Ведение учета результатов боевой подготовки в роте и во взводе Содержание журнала учета боевой подготовки во взводе. Учет результатов боевой подготовки - есть отражение количественных и качественных показателей выполнения планов подготовки соединений...

Сравнительно-исторический метод в языкознании сравнительно-исторический метод в языкознании является одним из основных и представляет собой совокупность приёмов...

Этические проблемы проведения экспериментов на человеке и животных В настоящее время четко определены новые подходы и требования к биомедицинским исследованиям...

Классификация потерь населения в очагах поражения в военное время Ядерное, химическое и бактериологическое (биологическое) оружие является оружием массового поражения...

Факторы, влияющие на степень электролитической диссоциации Степень диссоциации зависит от природы электролита и растворителя, концентрации раствора, температуры, присутствия одноименного иона и других факторов...

Studopedia.info - Студопедия - 2014-2024 год . (0.011 сек.) русская версия | украинская версия