Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Определенный интеграл





4.1.Площадь криволинейной трапеции.

Масса неоднородного стержня

Рассмотрим криволинейную трапецию, ограниченную линиями: x = a, x = b, y = f (x), y =0, где a < b, f (x)³ 0. Чтобы найти площадь криволинейной трапеции, разделим отрезок [ a; b ] на n равных частей, в каждом маленьком отрезке выберем точку и построим на нем прямоугольник, высота которого равна значению f (x) в выбранной точке. Если площадь полученной ступенчатой фигуры при увеличении числа n стремится к некоторому числу S, то S естественно считать площадью криволинейной трапеции.

Пример. Пусть криволинейная трапеция ограничена линиями: x =0, x =1, y = x 2. Разделим отрезок [0; 1] на n равных частей. На каждом отрезке [ ; ], где 1£ k £ n, построим прямоугольник, высота которого равна (значению функции в правом конце отрезка). Тогда площадь полученной ступенчатой фигуры равна , или . Используя формулу суммы квадратов первых n натуральных чисел, получим выражение = . При n®¥ предел этого выражения равен . Это число считают площадью криволинейной данной трапеции.·

Аналогично можно определить массу тонкого стержня переменной линейной плотности: стержень делится на отрезки, в каждом из которых выбирается некоторая точка. Тогда масса стержня приближенно равна сумме произведений вида r(xk)D xk, где r(xk) – значение плотности в выбранной точке, а D xk – длина соответствующего отрезка. Если при неограниченном увеличении числа отрезков эта сумма стремится к некоторому числу М, то М считают массой стержня.

4.2.Определение определенного интеграла

Пусть функция f (x) ограничена на отрезке [ a; b ]. Рассмотрим разбиение отрезка: a = x 0< x 1< …< x n–1< x n= b. На каждом промежутке [ xk –1; xk ], где 1£ k £ n, выберем точку x k. Обозначим D xk = xkxk –1. Диаметром разбиения назовем число d= и рассмотрим сумму f (x 1)D x 1+ f (x 2)D x 2+…+ f (x n)D x n; ее называют интегральной суммой данного разбиения.

Определение. Функция f (x) называется интегрируемой на отрезке [ a; b ], если при d®0 существует предел интегральных сумм, не зависящий от разбиения. Значение этого предела называется определенным интегралом функции f (x) на отрезке [ a; b ] и обозначается .

Замечание. можно рассматривать и в том случае, когда a < b. Как видно из определения интегральной суммы, при этом все D xk < 0, поэтому = – .

Приведенные в пункте 4.1 примеры характеризуют геометрический и физический смысл определенного интеграла: если f (x)³ 0 на отрезке [ a; b ], то – площадь криволинейной трапеции, ограниченной линиями x = a, x = b, y = f (x), y =0; если r(x) – переменная линейная плотность стержня, расположенного на отрезке [ a; b ], то –масса этого стержня.

4.3.Основные теоремы об определенном интеграле

 

Следующие две теоремы примем без доказательства.

Теорема 1. Если функция f (x) непрерывна на отрезке [ a; b ], то она интегрируема на этом отрезке.

Теорема 2. Если функция f (x) интегрируема на отрезке [ a; c ] и на отрезке [ c; b ], где a < c < b, то f (x) интегрируема на отрезке [ a; b ], причем = + .

Равенство = + называют свойством аддитивности определенного интеграла.

Теорема 3 (о среднем значении). Если функция f (x) непрерывна на отрезке [ a; b ], то на этом отрезке существует такое число с, что = f (с)(ba).

Доказательство. Пусть m и М – соответственно наименьшее и наибольшее значение функции на отрезке. Тогда для всякой интегральной суммы S= справедливо неравенство: £ S£ , – то есть m(ba)£ S£ M(ba). А значит, m(ba £ M(ba). Поэтому число заключено между наименьшим значением m и наибольшим значением M функции f (x). По теореме о промежуточном значении непрерывной на отрезке функции существует c Î [ a; b ]: f (с)= , – ч.т.д.

Значение f (с) называется в этом случае средним значением функции f (х) на отрезке [ a; b ]. Геометрически теорема 3 означает, что если f (x)³ 0 на отрезке [ a; b ], то площадь криволинейной трапеции, ограниченной линиями x = a, x = b, y = f (x), y =0, равна площади прямоугольника, построенного на этом отрезке и имеющего высоту, равную значению функции в некоторой точке отрезка.







Дата добавления: 2014-11-12; просмотров: 1104. Нарушение авторских прав; Мы поможем в написании вашей работы!




Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...

Прием и регистрация больных Пути госпитализации больных в стационар могут быть различны. В цен­тральное приемное отделение больные могут быть доставлены: 1) машиной скорой медицинской помощи в случае возникновения остро­го или обострения хронического заболевания...

ПУНКЦИЯ И КАТЕТЕРИЗАЦИЯ ПОДКЛЮЧИЧНОЙ ВЕНЫ   Пункцию и катетеризацию подключичной вены обычно производит хирург или анестезиолог, иногда — специально обученный терапевт...

Ситуация 26. ПРОВЕРЕНО МИНЗДРАВОМ   Станислав Свердлов закончил российско-американский факультет менеджмента Томского государственного университета...

Влияние первой русской революции 1905-1907 гг. на Казахстан. Революция в России (1905-1907 гг.), дала первый толчок политическому пробуждению трудящихся Казахстана, развитию национально-освободительного рабочего движения против гнета. В Казахстане, находившемся далеко от политических центров Российской империи...

Виды сухожильных швов После выделения культи сухожилия и эвакуации гематомы приступают к восстановлению целостности сухожилия...

КОНСТРУКЦИЯ КОЛЕСНОЙ ПАРЫ ВАГОНА Тип колёсной пары определяется типом оси и диаметром колес. Согласно ГОСТ 4835-2006* устанавливаются типы колесных пар для грузовых вагонов с осями РУ1Ш и РВ2Ш и колесами диаметром по кругу катания 957 мм. Номинальный диаметр колеса – 950 мм...

Studopedia.info - Студопедия - 2014-2025 год . (0.008 сек.) русская версия | украинская версия