Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Неопределенный интеграл. ?казательство. Поскольку (F(x)+С)¢=F¢(x)=f(x), то любая функция вида F(x)+С – первообразная функции f(x). ?казательство. Поскольку (F(x)+С)¢=F¢(x)=f(x), то любая функция вида F(x)+С – первообразная функции f(x)





1.1.Первообразная и неопределенный интеграл

Определение 1. Функция F(x) называется первообразной функции f (x) на отрезке [ a; b ], если на этом отрезке f (x)= F¢ (x).

Примеры. 1)Поскольку = х 3 при любом х, то функция – первообразная функции х 3 на всей числовой прямой.

2)Поскольку =sin3 х при любом х, то функция – первообразная функции sin3 х на всей числовой прямой.

3)Поскольку = при х > 0, то функция ln x – первообразная функции при х > 0. Поскольку = при х < 0, то функция ln(– x) – первообразная функции при х < 0. Отсюда получаем, что при всех х ¹ 0 функция lnï x ï – первообразная функции

Теорема 1. Если функция f (x) имеет на отрезке [ a; b ] первообразную F(x), то она имеет на этом отрезке бесконечно много первообразных, причем любую из них можно записать в виде F(x)+С, где С – произвольная константа.

Доказательство. Поскольку (F(x)+С)¢ =F¢ (x)= f (x), то любая функция вида F(x)+С – первообразная функции f (x). С другой стороны, если какая-нибудь функция G(x) – первообразная функции f (x), то F¢ (x)=G¢ (x) на отрезке [ a; b ]. А тогда эти функции отличаются на константу: G(x)=F(x)+С. Теорема доказана.

Определение 2. Множество всех первообразных функции f (x) на данном отрезке называется неопределенным интегралом этой функции и обозначается ò f (x) dx.

Если F(x) – одна из первообразных функции f (x), то пишут ò f (x) dx = F(x)+С.

Из определения сразу получаются два свойства неопределенного интеграла.

Теорема 2. df (x) dx)= f (x) dx.

Доказательство. Пусть ò f (x) dx = F(x)+С. Тогда df (x) dx)= d (F(x)+С)= F¢ (x) dx = f (x) dx, ч.т.д.

Теорема 3. ò dF (x) = F(x)+С.

Доказательство. ò dF (x)=ò (x) dx. Поскольку(F(x)+С)¢ = F¢ (x), то ò dF (x)= F(x)+С, ч.т.д.

1.2. Таблица неопределенных интегралов.

Свойство линейности

Используя таблицу производных, составим следующую таблицу неопределенных интегралов.

  1. = х 2. = +С, k ¹ –1
3. = lnï x ï +С 4. = +C
5. = +C 6. = +C
7. = +C 8. = –cos х
9. = sin х 10. =tg x +C
11. = –ctg x +C 12. = +C
13. =ch x +C 14. =sh x +C
15. =th x +C 16. = –cth x +C

 

Примеры. 1) = . Используем формулу (2) для k = – : = +С= +С.

2) Вычислим . Используем формулу (4) для а =4: = +C.

3) Вычислим . Используем формулу (5) для а =4: = +C = +С.

4) Вычислим . Используем формулу (6) для а = : = +C.

5) Вычислим . Используем формулу (7) для а = : = +C. ·

Следующее свойство неопределенного интеграла позволяет вычислять интегралы от линейных комбинаций табличных функций.

Свойство линейности. Если a, b – числа, f (x) и g (x) – функции, имеющие первообразные, то ò (a f (x)+b g (x)) dx = aò f (x) dx +bò g (x) dx. Чтобы убедиться в справедливости этого равенства, достаточно продифференцировать правую часть.

Примеры. 1)Свойство линейности позволяет записать в виде + –5 =

+ –5 = lnï x ï + –5 +С= lnï x ï +2 + +С.

2) = =

+ = + =tg x –ctg x +C.·







Дата добавления: 2014-11-12; просмотров: 543. Нарушение авторских прав; Мы поможем в написании вашей работы!




Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...

Лечебно-охранительный режим, его элементы и значение.   Терапевтическое воздействие на пациента подразумевает не только использование всех видов лечения, но и применение лечебно-охранительного режима – соблюдение условий поведения, способствующих выздоровлению...

Тема: Кинематика поступательного и вращательного движения. 1. Твердое тело начинает вращаться вокруг оси Z с угловой скоростью, проекция которой изменяется со временем 1. Твердое тело начинает вращаться вокруг оси Z с угловой скоростью...

Условия приобретения статуса индивидуального предпринимателя. В соответствии с п. 1 ст. 23 ГК РФ гражданин вправе заниматься предпринимательской деятельностью без образования юридического лица с момента государственной регистрации в качестве индивидуального предпринимателя. Каковы же условия такой регистрации и...

Классификация холодных блюд и закусок. Урок №2 Тема: Холодные блюда и закуски. Значение холодных блюд и закусок. Классификация холодных блюд и закусок. Кулинарная обработка продуктов...

ТЕРМОДИНАМИКА БИОЛОГИЧЕСКИХ СИСТЕМ. 1. Особенности термодинамического метода изучения биологических систем. Основные понятия термодинамики. Термодинамикой называется раздел физики...

Травматическая окклюзия и ее клинические признаки При пародонтите и парадонтозе резистентность тканей пародонта падает...

Studopedia.info - Студопедия - 2014-2025 год . (0.015 сек.) русская версия | украинская версия