Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Неупорядоченные линейные цепочки





 

Однако, рассмотрение моделей топологического беспорядка мы начнем с одномерных моделей. Если набор скалярных величин описывает расположение атомов на некоторой линии, то мы имеем одномерную цепочку. Упорядоченная цепочка будет определяться набором величин

, (3.3)

где - целое число. Если величины – случайные, то мы имеем дело с одномерной жидкостью или одномерным стеклом.

Относительно расположения атомов в такой системе можно выдвигать различные статистические гипотезы. В простейшем случае величины – независимые переменные, с постоянной вероятностью распределенные по всей длине цепочки. Это одномерный газ. Для характеристики его нужен лишь один статистический параметр – плотность упаковки или обратное ей среднее расстояние между частицами:

. (3.4)

Предел выражения (3.4) при неограниченном возрастании длины L и числа атомов N есть некоторая постоянная.

Поскольку абсолютная координата атома в цепочке не играет существенной роли, лучше задать статистические характеристики относительных координат атомов. В модели одномерного газа последовательные межатомные расстояния

(3.5)

распределены независимо и подчиняются распределению Пуассона

. (3.6)

Распределение Пуассона не подходит для конденсированных систем, поскольку не учитывается конечный размер атомов - принцип плотной упаковки. Этой модели можно придать известное правдоподобие, допустив, что атомы непроницаемы и не могут сблизиться на расстояние, меньшее некоторого минимального диаметра D; вместе с тем любой свободный зазор, превышающий некоторую длину G, будет занят другим атомом. В этом и заключается физическое обоснование модели Борланда, согласно которой межатомное расстояние должно лежать в некоторых фиксированных пределах

(3.7)

Согласно вычислениям по методу Монте-Карло, отрезки равной длины могут быть случайно и без перекрытия распределены вдоль некоторой линии, пока их концентрация не превышает 0, 75 концентрации в соответствующей регулярной плотно упакованной структуре. Другими словами, в рамках данной модели жидкости разумен выбор Dc = 1/2 G» 0, 75 а. Фактически результат 0, 7476 был получен еще в 1964 г. в так называемой «задаче о стоянке автомобилей». Сходный результат получается и с помощью «оборванного» распределения Пуассона для величин зазоров (рис. 3.3).

Рис.3.3. Модель Борланда.

 

В некоторых случаях удобно рассматривать одномерную гауссову жидкость, в которой каждая величина - подчиняется нормальному распределению с дисперсией и средним значением а, хотя на самом деле такой физической системы, видимо, не существует.

3.3.1. Модель Кронига – Пенни для неупорядоченной цепочки

Задав расположение атомов, мы должны определить другие существенные параметры модели. Например, для изучения динамики решетки одномерного стекла мы постулируем, что межатомные силы должны изменяться в зависимости от расстояния между соседними атомами. Далее, учет изменений интегралов перекрытия, содержащих волновые функции электронов, локализованных на соседних атомах, приводит к модели сильно связанных электро-

 

 

Рис. 3.4. а – модель беспорядка Кронига- Пенни; б – обобщение на суперпозицию потенциалов случайно расположенных атомов.

 

нов в неупорядоченных системах. В теории движения электронов в жидких металлах часто исходят из неупорядоченной модели Кронига – Пенни, в которой потенциальная энергия электрона в поле отдельного атома описывается дельта-функцией (рис.3.4):

.







Дата добавления: 2014-11-12; просмотров: 652. Нарушение авторских прав; Мы поможем в написании вашей работы!




Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...


Теория усилителей. Схема Основная масса современных аналоговых и аналого-цифровых электронных устройств выполняется на специализированных микросхемах...

Определение трудоемкости работ и затрат машинного времени На основании ведомости объемов работ по объекту и норм времени ГЭСН составляется ведомость подсчёта трудоёмкости, затрат машинного времени, потребности в конструкциях, изделиях и материалах (табл...

Гидравлический расчёт трубопроводов Пример 3.4. Вентиляционная труба d=0,1м (100 мм) имеет длину l=100 м. Определить давление, которое должен развивать вентилятор, если расход воздуха, подаваемый по трубе, . Давление на выходе . Местных сопротивлений по пути не имеется. Температура...

Огоньки» в основной период В основной период смены могут проводиться три вида «огоньков»: «огонек-анализ», тематический «огонек» и «конфликтный» огонек...

Дренирование желчных протоков Показаниями к дренированию желчных протоков являются декомпрессия на фоне внутрипротоковой гипертензии, интраоперационная холангиография, контроль за динамикой восстановления пассажа желчи в 12-перстную кишку...

Деятельность сестер милосердия общин Красного Креста ярко проявилась в период Тритоны – интервалы, в которых содержится три тона. К тритонам относятся увеличенная кварта (ув.4) и уменьшенная квинта (ум.5). Их можно построить на ступенях натурального и гармонического мажора и минора.  ...

Понятие о синдроме нарушения бронхиальной проходимости и его клинические проявления Синдром нарушения бронхиальной проходимости (бронхообструктивный синдром) – это патологическое состояние...

Studopedia.info - Студопедия - 2014-2025 год . (0.008 сек.) русская версия | украинская версия