Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Квадратурные формулы Ньютона-Котеса




 

Рассмотрим применение в качестве интерполяционного полинома Лагранжа.

, (8.1)

где - ошибка квадратурной формулы (8.1) или остаточный член

Выбрав шаг ,разобьем отрезок с помощью равноотстоящих точек , , на n равных частей, и пусть . Заменяя функцию соответствующим интерполирующим полиномом Лагранжа

,

получим приближенную квадратурную формулу:

, (8.2)

 

- некоторые постоянные коэффициенты. Найдём явные выражения для коэффициентов формулы (8.2).

Коэффициенты полинома Лагранжа имеют вид:

,

 

где , причем .

 

Введем обозначения: и тогда

,

.

Сделав замену переменных в определенном интеграле , будем иметь: .

Учитывая, что , обычно полагают , где это постоянные, называемые коэффициентами Котеса.

Квадратурная формула (8.2) принимает вид:

 

(8.3)

 

Формулы называются квадратурными формулами Ньютона-Котеса

Справедливы соотношения: 1. ; 2. .

 







Дата добавления: 2014-11-12; просмотров: 466. Нарушение авторских прав


Рекомендуемые страницы:


Studopedia.info - Студопедия - 2014-2020 год . (0.002 сек.) русская версия | украинская версия