Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Метод выравнивания





К линейной функции можно привести любую функцию вида ψ (y)=aּ φ (x)+b, для этого достаточно сделать замену переменных, z=ψ (y), t=φ (x). Тогда мы получим z=aּ t+b.

Рассмотрим показательную функцию .

Прологарифмируем это равенство. Получим ln(y)=ln(a)+x ln(b). Сделаем замену переменных z= ln(y), t=x и обозначим А= ln(b) B= ln(a). После замены получим z=A t+b.

Аналогично делаются замены и для других функций из таблицы.

 

Таблица 7.1.

Таблица замен

Вид функции Замена переменных Характерные точки Отклонения
1.      
2.
3.
4.
5.
6.
7.

 

, , .

 

, , .

- табличное значение для xар;

- табличное значение для хгеом;

- табличное значение для хгарм.

В таблице может не оказаться точек тогда точки , доопределяют по соседним точкам таблицы с помощью линейной интерполяции.

Для аналитических кривых существуют характерные точки, которые лежат на этих кривых. Например, если две точки принадлежат прямой, то и точка с координатами (, ) принадлежит той же прямой, если две точки принадлежат гиперболе, то и точка (xар, yгарм) также принадлежат этой гиперболе. В таблице через обозначено отклонение табличного значения , соответствующего xар, от ординаты характерной точки , через - отклонение табличного от ординаты характерной точки yгарм и т.д.

Остальные находятся аналогично, в зависимости от характерных точек. Функция, для которой примет наименьшее значение и будет наиболее подходящей. После соответствующей замены переменных применяют метод наименьших квадратов.

 

Пример 7.1

Бомба «Рейда» это техническое устройство для изучения легкоиспаряющихся жидкостей. В эксперименте на бомбе «Рейда» при постоянной температуре измеряется манометром избыточное давление паров нефти при различных соотношениях объёмов газовой и жидкой фаз. Определить эмпирическую зависимость давления паров нефти от соотношения объёмов газовой и жидкой фаз методом наименьших квадратов. Набор экспериментальных данных представлен в таблицах

 

Для того, чтобы выбрать наиболее подходящую зависимость построим график по табличным данным

 

 

Можно предположить, что это будет:

1. показательная функция (строка 2 таблицы 7.1),

2. степенная функция (строка 5 таблицы 7.1),

3. дробно–рациональная функция (строка 3 таблицы 7.1).

Выберем ту функцию, для которой примет наименьшее значение.

 

В таблице данных нет значений , , , подставляя , , вместо v в формулу для линейной интерполяции, найдем соответствующие им значения функции , , .

Формула для вычисления табличного значения для , , , с помощью линейной интерполяции

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Самые маленькие . Найдем методом выравнивания параметры для выбранных видов зависимостей. Будем искать аппроксимирующую функцию в виде

.

Делаем замену переменных

 

 

 

После замены точки ложатся близко к прямой. Параметры этой прямой A и B

 

 

 

После замены z = At + B нашли A и B по методу наименьших квадратов, используя встроенные функции Mathcadа.

Функция slope(x, y) возвращает значение углового коэффициента.

Функция intercept(x, y) возвращает значение свободного параметра.

Возвращаемся к исходной функции , строим её график и находим сумму квадратов отклонений от исходной таблицы значений. Можно также найти и среднеквадратичное отклонение.

.

 

Из двух разных приближений одной и той же табличной функции лучшим считается то, для которого сумма квадратов отклонений меньше.

Для этой же таблицы данных рассмотрим приближение, заданное показательной функцией

.

  Замена переменных

 

 

 

 

 

 

 

среднеквадратичное отклонение.
сумма квадратов отклонений

 

 

 

Для этой же таблицы данных рассмотрим приближение, заданное дробно-линейной функцией .

 

 

 

Рис. 7.2. Решение примера 7.1 в Mathcad

Лучшим приближением для этих экспериментальных данных будет степенная функция.

 







Дата добавления: 2014-11-12; просмотров: 1004. Нарушение авторских прав; Мы поможем в написании вашей работы!




Картограммы и картодиаграммы Картограммы и картодиаграммы применяются для изображения географической характеристики изучаемых явлений...


Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...

Словарная работа в детском саду Словарная работа в детском саду — это планомерное расширение активного словаря детей за счет незнакомых или трудных слов, которое идет одновременно с ознакомлением с окружающей действительностью, воспитанием правильного отношения к окружающему...

Правила наложения мягкой бинтовой повязки 1. Во время наложения повязки больному (раненому) следует придать удобное положение: он должен удобно сидеть или лежать...

ТЕХНИКА ПОСЕВА, МЕТОДЫ ВЫДЕЛЕНИЯ ЧИСТЫХ КУЛЬТУР И КУЛЬТУРАЛЬНЫЕ СВОЙСТВА МИКРООРГАНИЗМОВ. ОПРЕДЕЛЕНИЕ КОЛИЧЕСТВА БАКТЕРИЙ Цель занятия. Освоить технику посева микроорганизмов на плотные и жидкие питательные среды и методы выделения чис­тых бактериальных культур. Ознакомить студентов с основными культуральными характеристиками микроорганизмов и методами определения...

Тема 2: Анатомо-топографическое строение полостей зубов верхней и нижней челюстей. Полость зуба — это сложная система разветвлений, имеющая разнообразную конфигурацию...

Виды и жанры театрализованных представлений   Проживание бронируется и оплачивается слушателями самостоятельно...

Что происходит при встрече с близнецовым пламенем   Если встреча с родственной душой может произойти достаточно спокойно – то встреча с близнецовым пламенем всегда подобна вспышке...

Studopedia.info - Студопедия - 2014-2026 год . (0.011 сек.) русская версия | украинская версия