Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Глава 6. Аппроксимация функций с помощью сплайнов





 

При большом количестве узлов интерполяции приходится использовать интерполяционные полиномы высокой степени, что создает определенные неудобства при вычислениях. Можно избежать высокой степени интерполяционного многочлена, разбив отрезок интерполяции на несколько частей с построением на каждой части самостоятельного интерполяционного многочлена. Однако такое интерполирование обладает существенным недостатком: в точках сшивки разных интерполяционных полиномов будет разрывной их первая производная, поэтому для решения задачи кусочно-линейной интерполяции используют особый вид кусочно-полиномиальной интерполяции — сплайн-интерполяцию. Сплайн — это функция, которая на каждом частичном отрезке интерполяции является алгебраическим многочленом, а на всем заданном отрезке непрерывна вместе с несколькими своими производными.

Математически сплайны моделируют старое механическое устройство из гибких реек. Если их жестко закрепить в узлах интерполяции, то рейки принимают форму, минимизирующую их потенциальную энергию

Основные характеристики сплайнов:

- количество и расположение узлов;

- наибольший порядок m многочлена, из которого склеен сплайн;

- гладкость сплайна в узлах.

Пусть на отрезке задана функция аналитически (в виде ), таблично или графически. Для замены этой функции сплайном разобьем отрезок на n частей и составим таблицу:

 

Функция

 

Здесь , , а - значения функции при .

Дадим математическое определение сплайна. Сплайном степени m называется функция удовлетворяющая следующим свойствам:

непрерывна на вместе со всеми производными до некоторого порядка р;

На каждом отрезке совпадает с некоторым многочленом Pm, k(x) степени m

Пусть в каждой точке существует непрерывная производная . А следующая производная может быть уже разрывная. Дефектом в сплайне называется число в точке . Если мы возьмем , то это тоже дефект сплайна.

Интерполяция ломаными это самый простой сплайн первой степени с дефектом, равным единице. В этом случае сама функция непрерывна, а уже первая производная разрывная. Если функция задана таблично, то значения выбираем из таблицы; при этом, чем больше n, тем лучше аппроксимация. На каждом из элементарных отрезков заменяем функцию отрезком прямой: .

 







Дата добавления: 2014-11-12; просмотров: 725. Нарушение авторских прав; Мы поможем в написании вашей работы!




Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...

Этические проблемы проведения экспериментов на человеке и животных В настоящее время четко определены новые подходы и требования к биомедицинским исследованиям...

Классификация потерь населения в очагах поражения в военное время Ядерное, химическое и бактериологическое (биологическое) оружие является оружием массового поражения...

Факторы, влияющие на степень электролитической диссоциации Степень диссоциации зависит от природы электролита и растворителя, концентрации раствора, температуры, присутствия одноименного иона и других факторов...

Пункты решения командира взвода на организацию боя. уяснение полученной задачи; оценка обстановки; принятие решения; проведение рекогносцировки; отдача боевого приказа; организация взаимодействия...

Что такое пропорции? Это соотношение частей целого между собой. Что может являться частями в образе или в луке...

Растягивание костей и хрящей. Данные способы применимы в случае закрытых зон роста. Врачи-хирурги выяснили...

Studopedia.info - Студопедия - 2014-2025 год . (0.012 сек.) русская версия | украинская версия