Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Кубические сплайны





 

При рассмотрении изгиба изогнутость приходится представлять кривой более высоких порядков. В этом случае часто применяют кубические сплайн функции, когда функция интерполируется на каждом элементарном отрезке кубическим многочленом. На отрезке оси Ox зададим равномерную сетку с шагом , в узлах зададим значения функции , определенной на отрезке .

Внутри каждого элементарного отрезка заменим функцию функцией , удовлетворяющей следующим условиям:

1. непрерывна на вместе со своими производными первого и второго порядка;

2. на каждом отрезке является кубическим многочленом:

(6.1);.

3. в узлах сетки выполняется равенство ;

4. удовлетворяет граничным условиям .

Требуется найти четверку неизвестных коэффициентов для всех Можно доказать, что задача нахождения кубического сплайна имеет единственное решение.

Потребуем выполнения третьего условия, совпадения значений функции в узлах с табличными значениями;

(6.2)

(6.3)

Число полученных уравнений 2n в два раза меньше числа неизвестных коэффициентов. Для составления оставшихся уравнений воспользуемся первым условием о непрерывности производных сплайна во всех точках. Приравняем левые и правые производные во внутреннем узле xk , вычислив предварительно выражение для производных последовательным дифференцированием (6.1)

(6.4)

(6.5)

Найдем правые и левые производные в узле:

Приравняв левые и правые производные, получим для:

(6.6)

Уравнения (6.6) дают еще 2(n-1) условий. Для получения недостающих уравнений накладывают требования к поведению сплайна на концах отрезка . При нулевой кривизне, когда вторая производная равна нулю, например, получим:

(6.7)

Исключив из уравнений (6.2)- (6.6) неизвестные ak, получим систему из 3n уравнений:

(6.8)

Решив эту систему, мы найдем значения неизвестных ak, bk, ck определяющих совокупность формул для искомого интерполяционного сплайна

Для вычисления коэффициентов сплайнов в Mathcad предназначены функции, возвращающие массив коэффициентов:

cspline(x, y)-кубического сплайна;

pspline(x, y)-квадратичного сплайна;

lcspline(x, y)-линейного сплайна;

Во всех этих функциях х-массив абсцисс, а y- массив ординат экспериментальных точек. После вычисления коэффициентов сплайнов можно вычислить значение интерполяционного полинома в конкретной точке t, обратившись к функции interp(x, U, P, t), где х- массив коэффициентов сплайнов

 

Пример 6.1 В результате опыта холостого хода определена таблица зависимости потребляемой из сети мощности P от выходного напряжения U для асинхронного двигателя. Построить график интерполяционной зависимости. При решении воспользуемся встроенными функциями сплайновой аппроксимации в Mathcad

 

Экспериментальные точки

 

 

 

 

 

 

 

 

 

 

Построим графики этих функций.

 

 

 

Рис 6.1. Решение примера 6.1 в Mathcad








Дата добавления: 2014-11-12; просмотров: 756. Нарушение авторских прав; Мы поможем в написании вашей работы!




Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...


Теория усилителей. Схема Основная масса современных аналоговых и аналого-цифровых электронных устройств выполняется на специализированных микросхемах...


Логические цифровые микросхемы Более сложные элементы цифровой схемотехники (триггеры, мультиплексоры, декодеры и т.д.) не имеют...

Виды нарушений опорно-двигательного аппарата у детей В общеупотребительном значении нарушение опорно-двигательного аппарата (ОДА) идентифицируется с нарушениями двигательных функций и определенными органическими поражениями (дефектами)...

Особенности массовой коммуникации Развитие средств связи и информации привело к возникновению явления массовой коммуникации...

Тема: Изучение приспособленности организмов к среде обитания Цель:выяснить механизм образования приспособлений к среде обитания и их относительный характер, сделать вывод о том, что приспособленность – результат действия естественного отбора...

Образование соседних чисел Фрагмент: Программная задача: показать образование числа 4 и числа 3 друг из друга...

Шрифт зодчего Шрифт зодчего состоит из прописных (заглавных), строчных букв и цифр...

Краткая психологическая характеристика возрастных периодов.Первый критический период развития ребенка — период новорожденности Психоаналитики говорят, что это первая травма, которую переживает ребенок, и она настолько сильна, что вся последую­щая жизнь проходит под знаком этой травмы...

Studopedia.info - Студопедия - 2014-2025 год . (0.013 сек.) русская версия | украинская версия