Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Метод наименьших квадратов для полиномов





Мы рассматривали функции, зависящие от двух параметров. Предположим, что аппроксимирующая функция имеет вид квадратичной зависимости: .

Аналогично линейной зависимости составим функцию

, где ( -табличное значение, - эмпирическая формула).

 

Возьмем частные производные по a, b и c

И приравняем их к нулю

 

 

Получим нормальную систему уравнений.

 

-

 

Решив нормальную систему относительно неизвестных a, b, с, найдём значения параметров приближающей функции.

Если аппроксимирующая функция является многочленом более высокого порядка “n”, то суть подхода к решению задачи не изменится, а увеличится только число уравнений системы.

 

Пример 7.2.

 

Данные предыдущего примера 7.1 аппроксимируем квадратичной зависимостью: . Напомним условие примера

 

 

 

Задание матрицы коэффициентов нормальной системы и столбца ее свободных членов
Решение нормальной системы

 

 

 

 

сумма квадратов отклонений

 

 

 

среднеквадратичное отклонение

 

 

 

 

Рис. 7.3. Решение примера 7.2 в Mathcad

 

Поскольку величина суммы квадратов отклонений для квадратичной зависимости получилась больше, чем у найденной ранее степенной функции, в данном примере предпочтительнее степенная функция.

Если аппроксимирующая функция является многочленом более высокого порядка “n”, то суть подхода к решению задачи не изменится, а увеличится только число уравнений системы.

Для построения аппроксимирующей зависимости в виде многочлена в Mathcad можно воспользоваться встроенными функциями regress и interp. Функция regress(x, y, k) возвращает вектор коэффициентов полиномов k-й степени, подобранного методом наименьших квадратов по экспериментальным точкам x и y(x -массив абсцисс, y- массив ординат). Элементы массива x должны быть упорядочены по возрастанию.

Пример 7.3

Продолжим вычисления с данными примера 7.1:

 

 

 

 
Сумма квадратов отклонений.

 

Среднеквадратичное отклонение

 

 

 

Естественно, результаты такие же, как в примере 7.2

 

 

 

Сумма квадратов отклонений измеренных значений от вычисленных

 

 

  среднеквадратичное отклонение

 

 

Для кубической параболы получился самый хороший результат

Графики практически совпадают, поэтому не имеет смысла брать приближающий многочлен более высокого порядка.

 

Рис. 7.4. Решение примера 7.2 в Mathcad








Дата добавления: 2014-11-12; просмотров: 1245. Нарушение авторских прав; Мы поможем в написании вашей работы!




Шрифт зодчего Шрифт зодчего состоит из прописных (заглавных), строчных букв и цифр...


Картограммы и картодиаграммы Картограммы и картодиаграммы применяются для изображения географической характеристики изучаемых явлений...


Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...

Субъективные признаки контрабанды огнестрельного оружия или его основных частей   Переходя к рассмотрению субъективной стороны контрабанды, остановимся на теоретическом понятии субъективной стороны состава преступления...

ЛЕЧЕБНО-ПРОФИЛАКТИЧЕСКОЙ ПОМОЩИ НАСЕЛЕНИЮ В УСЛОВИЯХ ОМС 001. Основными путями развития поликлинической помощи взрослому населению в новых экономических условиях являются все...

МЕТОДИКА ИЗУЧЕНИЯ МОРФЕМНОГО СОСТАВА СЛОВА В НАЧАЛЬНЫХ КЛАССАХ В практике речевого общения широко известен следующий факт: как взрослые...

Случайной величины Плотностью распределения вероятностей непрерывной случайной величины Х называют функцию f(x) – первую производную от функции распределения F(x): Понятие плотность распределения вероятностей случайной величины Х для дискретной величины неприменима...

Схема рефлекторной дуги условного слюноотделительного рефлекса При неоднократном сочетании действия предупреждающего сигнала и безусловного пищевого раздражителя формируются...

Уравнение волны. Уравнение плоской гармонической волны. Волновое уравнение. Уравнение сферической волны Уравнением упругой волны называют функцию , которая определяет смещение любой частицы среды с координатами относительно своего положения равновесия в произвольный момент времени t...

Studopedia.info - Студопедия - 2014-2026 год . (0.013 сек.) русская версия | украинская версия