Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Метод наименьших квадратов для полиномов





Мы рассматривали функции, зависящие от двух параметров. Предположим, что аппроксимирующая функция имеет вид квадратичной зависимости: .

Аналогично линейной зависимости составим функцию

, где ( -табличное значение, - эмпирическая формула).

 

Возьмем частные производные по a, b и c

И приравняем их к нулю

 

 

Получим нормальную систему уравнений.

 

-

 

Решив нормальную систему относительно неизвестных a, b, с, найдём значения параметров приближающей функции.

Если аппроксимирующая функция является многочленом более высокого порядка “n”, то суть подхода к решению задачи не изменится, а увеличится только число уравнений системы.

 

Пример 7.2.

 

Данные предыдущего примера 7.1 аппроксимируем квадратичной зависимостью: . Напомним условие примера

 

 

 

Задание матрицы коэффициентов нормальной системы и столбца ее свободных членов
Решение нормальной системы

 

 

 

 

сумма квадратов отклонений

 

 

 

среднеквадратичное отклонение

 

 

 

 

Рис. 7.3. Решение примера 7.2 в Mathcad

 

Поскольку величина суммы квадратов отклонений для квадратичной зависимости получилась больше, чем у найденной ранее степенной функции, в данном примере предпочтительнее степенная функция.

Если аппроксимирующая функция является многочленом более высокого порядка “n”, то суть подхода к решению задачи не изменится, а увеличится только число уравнений системы.

Для построения аппроксимирующей зависимости в виде многочлена в Mathcad можно воспользоваться встроенными функциями regress и interp. Функция regress(x, y, k) возвращает вектор коэффициентов полиномов k-й степени, подобранного методом наименьших квадратов по экспериментальным точкам x и y(x -массив абсцисс, y- массив ординат). Элементы массива x должны быть упорядочены по возрастанию.

Пример 7.3

Продолжим вычисления с данными примера 7.1:

 

 

 

 
Сумма квадратов отклонений.

 

Среднеквадратичное отклонение

 

 

 

Естественно, результаты такие же, как в примере 7.2

 

 

 

Сумма квадратов отклонений измеренных значений от вычисленных

 

 

  среднеквадратичное отклонение

 

 

Для кубической параболы получился самый хороший результат

Графики практически совпадают, поэтому не имеет смысла брать приближающий многочлен более высокого порядка.

 

Рис. 7.4. Решение примера 7.2 в Mathcad








Дата добавления: 2014-11-12; просмотров: 1245. Нарушение авторских прав; Мы поможем в написании вашей работы!




Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...

Общая и профессиональная культура педагога: сущность, специфика, взаимосвязь Педагогическая культура- часть общечеловеческих культуры, в которой запечатлил духовные и материальные ценности образования и воспитания, осуществляя образовательно-воспитательный процесс...

Устройство рабочих органов мясорубки Независимо от марки мясорубки и её технических характеристик, все они имеют принципиально одинаковые устройства...

Ведение учета результатов боевой подготовки в роте и во взводе Содержание журнала учета боевой подготовки во взводе. Учет результатов боевой подготовки - есть отражение количественных и качественных показателей выполнения планов подготовки соединений...

Шов первичный, первично отсроченный, вторичный (показания) В зависимости от времени и условий наложения выделяют швы: 1) первичные...

Предпосылки, условия и движущие силы психического развития Предпосылки –это факторы. Факторы психического развития –это ведущие детерминанты развития чел. К ним относят: среду...

Анализ микросреды предприятия Анализ микросреды направлен на анализ состояния тех со­ставляющих внешней среды, с которыми предприятие нахо­дится в непосредственном взаимодействии...

Studopedia.info - Студопедия - 2014-2026 год . (0.013 сек.) русская версия | украинская версия