Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Общая формула Симпсона и ее остаточный член





Пусть n=2m есть четное число и - значения функции для равноотстоящих точек с шагом . Применяя формулу Симпсона к каждому удвоенному промежутку длины 2h, будем иметь .

Следовательно, .

Отсюда получаем общую формулу Симпсона:

.

Введя обозначения , формулу можно записать в более простом виде:

 

.

 

Если функция непрерывно дифференцируема до четвертого порядка, то ошибка формулы Симпсона на каждом удвоенном промежутке дается формулой:

, где .

Суммируя все эти ошибки, получим остаточный член общей формулы Симпсона в виде:

.

непрерывна на отрезке [ a, b ], поэтому найдется точка такая, что .

Следовательно

, (8.9)

где .

Если задана предельная допустимая погрешность , то, обозначив , будем иметь для определения шага h неравенство:

, отсюда , т.е. h имеет порядок . Говорят, что степень точности метода Симпсона равна четырем

Во многих случаях оценка погрешности квадратурной формулы весьма затруднительна. Тогда обычно применяют двойной пересчет с шагами h и 2 h и считают, что совпадающие десятичные знаки принадлежат точному значению интеграла.

Предполагая, что на отрезке [ a, b ] производная меняется медленно, в силу формулы (8.9), получаем приближенное выражение для искомой ошибки

, где коэффициент M будем считать постоянным на промежутке интегрирования. Пусть и - приближенные значения интеграла , полученные по формуле Симпсона соответственно с шагом h и H=2h. Имеем: и . Отсюда

 

.

 

За приближенное значение интеграла целесообразно принять исправленное значение

 

.

 

Пример 8.2 Вычислить в Mathcad интеграл методом Симпсона для n=8. Оценить остаточный член.

 

 

 

Вычисляем для формулы Симпсона при n=4

 

 

 

Сделаем двойной пересчет при n=8

 

 

В качестве ответа возьмем

 

Остаточный член приблизительно равен

 

 

 

Это точный результат

 

 

Рис. 8.3. Решение примера 8.2 в Mathcad

 







Дата добавления: 2014-11-12; просмотров: 2122. Нарушение авторских прав; Мы поможем в написании вашей работы!




Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...

САНИТАРНО-МИКРОБИОЛОГИЧЕСКОЕ ИССЛЕДОВАНИЕ ВОДЫ, ВОЗДУХА И ПОЧВЫ Цель занятия.Ознакомить студентов с основными методами и показателями...

Меры безопасности при обращении с оружием и боеприпасами 64. Получение (сдача) оружия и боеприпасов для проведения стрельб осуществляется в установленном порядке[1]. 65. Безопасность при проведении стрельб обеспечивается...

Весы настольные циферблатные Весы настольные циферблатные РН-10Ц13 (рис.3.1) выпускаются с наибольшими пределами взвешивания 2...

Мотивационная сфера личности, ее структура. Потребности и мотивы. Потребности и мотивы, их роль в организации деятельности...

Классификация ИС по признаку структурированности задач Так как основное назначение ИС – автоматизировать информационные процессы для решения определенных задач, то одна из основных классификаций – это классификация ИС по степени структурированности задач...

Внешняя политика России 1894- 1917 гг. Внешнюю политику Николая II и первый период его царствования определяли, по меньшей мере три важных фактора...

Studopedia.info - Студопедия - 2014-2026 год . (0.013 сек.) русская версия | украинская версия