Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Метод последовательного дифференцирования





 

Рассмотрим уравнение

 

(9.1)

 

с начальными условиями . Предположим, что искомое частное решение может быть разложено в ряд Тейлора по степеням разности :

Начальные условия непосредственно дают нам значения при . Значение найдем из уравнения (9.1), подставляя и используя начальные условия:

.

Значения последовательно определяются дифференцированием уравнения (9.1) и подстановкой , при .

Доказано, что если правая часть уравнения (9.1) в окрестности точки есть аналитическая функция своих аргументов, то при значениях x, достаточно близких к , существует единственное решение задачи Коши, которое разлагается в ряд Тейлора. Тогда частичная сумма этого ряда будет приближенным решением поставленной задачи.

Аналогично применяется метод последовательного дифференцирования и для решения систем дифференциальных уравнений.

 

Пример 9.1 Найти первые семь членов разложения в степенной ряд решения уравнения y'' +0.1(y')2+(1+0.1 x) y = 0 с начальными условиями y (0)=1, y '(0)=2

 

Решение уравнения ищем в виде ряда

Непосредственно из начальных условий имеем y (0)=1, y '(0)=2

Разрешим уравнение относительно y'';

 

y' '=-0.1(y')2-(1+0.1 x)

 

используя начальные условия, получим

 

y'' (0)=-0.1·4-1·1=-1.4

 

Дифференцируем по x обе части уравнения последовательно получим:

y''' =0.2 y' · y'' -0.1(xy' + y)- y' y'' '(0)=-1.54

 

y (4)=-0.2(y' y''' +(y'')2)-0.1(xy' '+2 y')- y'' y (4)(0)=1.224

 

y (5)= -0.2(y' · y (4)+3 y'' y''') -0.1(xy''' +3 y'')- y''' y (5)(0)=0.1768

 

y (6)(0)= -0.2(y' · y (5)+4 y'' y (4)+3(y''')2)-0.1(x y (4)+4 y''')- y (4) y (6)(0) =-0.7308

 

Искомое решение приближенно запишется в виде:

 

y (x)≈ 1+2 x -0.7 x 2-0.2567 x 3+0.051 x 4+0.00147 x 5-0.00101 x 6

 

Пример 9.2. Найти первые четыре члена разложения в степенной ряд решения y = y (x) z = z(x) системы с начальными условиями y (0)=1 z (0)=0

 

Функции y (x) и z (x) ищем в виде степенных рядов

при х =0 из уравнений системы следует, что y (0)'=1, z (0)'=0

Дифференцируем по х уравнения системы.

Находим y ''(0)=1, z ''(0)=1

Продифференцируем по х уравнения системы еще раз.

y ''' (0)=0, z''' (0)=3

Подставляя найденные значения производных в ряды, получим:

y (x)≈ 1+ x -0.5 x 2, z (x)≈ 0.5 x 2-0.5 x 3







Дата добавления: 2014-11-12; просмотров: 7913. Нарушение авторских прав; Мы поможем в написании вашей работы!




Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...

Эндоскопическая диагностика язвенной болезни желудка, гастрита, опухоли Хронический гастрит - понятие клинико-анатомическое, характеризующееся определенными патоморфологическими изменениями слизистой оболочки желудка - неспецифическим воспалительным процессом...

Признаки классификации безопасности Можно выделить следующие признаки классификации безопасности. 1. По признаку масштабности принято различать следующие относительно самостоятельные геополитические уровни и виды безопасности. 1.1. Международная безопасность (глобальная и...

Прием и регистрация больных Пути госпитализации больных в стационар могут быть различны. В цен­тральное приемное отделение больные могут быть доставлены: 1) машиной скорой медицинской помощи в случае возникновения остро­го или обострения хронического заболевания...

Травматическая окклюзия и ее клинические признаки При пародонтите и парадонтозе резистентность тканей пародонта падает...

Подкожное введение сывороток по методу Безредки. С целью предупреждения развития анафилактического шока и других аллергических реак­ций при введении иммунных сывороток используют метод Безредки для определения реакции больного на введение сыворотки...

Принципы и методы управления в таможенных органах Под принципами управления понимаются идеи, правила, основные положения и нормы поведения, которыми руководствуются общие, частные и организационно-технологические принципы...

Studopedia.info - Студопедия - 2014-2025 год . (0.013 сек.) русская версия | украинская версия