Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Метод последовательного дифференцирования





 

Рассмотрим уравнение

 

(9.1)

 

с начальными условиями . Предположим, что искомое частное решение может быть разложено в ряд Тейлора по степеням разности :

Начальные условия непосредственно дают нам значения при . Значение найдем из уравнения (9.1), подставляя и используя начальные условия:

.

Значения последовательно определяются дифференцированием уравнения (9.1) и подстановкой , при .

Доказано, что если правая часть уравнения (9.1) в окрестности точки есть аналитическая функция своих аргументов, то при значениях x, достаточно близких к , существует единственное решение задачи Коши, которое разлагается в ряд Тейлора. Тогда частичная сумма этого ряда будет приближенным решением поставленной задачи.

Аналогично применяется метод последовательного дифференцирования и для решения систем дифференциальных уравнений.

 

Пример 9.1 Найти первые семь членов разложения в степенной ряд решения уравнения y'' +0.1(y')2+(1+0.1 x) y = 0 с начальными условиями y (0)=1, y '(0)=2

 

Решение уравнения ищем в виде ряда

Непосредственно из начальных условий имеем y (0)=1, y '(0)=2

Разрешим уравнение относительно y'';

 

y' '=-0.1(y')2-(1+0.1 x)

 

используя начальные условия, получим

 

y'' (0)=-0.1·4-1·1=-1.4

 

Дифференцируем по x обе части уравнения последовательно получим:

y''' =0.2 y' · y'' -0.1(xy' + y)- y' y'' '(0)=-1.54

 

y (4)=-0.2(y' y''' +(y'')2)-0.1(xy' '+2 y')- y'' y (4)(0)=1.224

 

y (5)= -0.2(y' · y (4)+3 y'' y''') -0.1(xy''' +3 y'')- y''' y (5)(0)=0.1768

 

y (6)(0)= -0.2(y' · y (5)+4 y'' y (4)+3(y''')2)-0.1(x y (4)+4 y''')- y (4) y (6)(0) =-0.7308

 

Искомое решение приближенно запишется в виде:

 

y (x)≈ 1+2 x -0.7 x 2-0.2567 x 3+0.051 x 4+0.00147 x 5-0.00101 x 6

 

Пример 9.2. Найти первые четыре члена разложения в степенной ряд решения y = y (x) z = z(x) системы с начальными условиями y (0)=1 z (0)=0

 

Функции y (x) и z (x) ищем в виде степенных рядов

при х =0 из уравнений системы следует, что y (0)'=1, z (0)'=0

Дифференцируем по х уравнения системы.

Находим y ''(0)=1, z ''(0)=1

Продифференцируем по х уравнения системы еще раз.

y ''' (0)=0, z''' (0)=3

Подставляя найденные значения производных в ряды, получим:

y (x)≈ 1+ x -0.5 x 2, z (x)≈ 0.5 x 2-0.5 x 3







Дата добавления: 2014-11-12; просмотров: 7913. Нарушение авторских прав; Мы поможем в написании вашей работы!




Шрифт зодчего Шрифт зодчего состоит из прописных (заглавных), строчных букв и цифр...


Картограммы и картодиаграммы Картограммы и картодиаграммы применяются для изображения географической характеристики изучаемых явлений...


Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...

Демографияда "Демографиялық жарылыс" дегеніміз не? Демография (грекше демос — халық) — халықтың құрылымын...

Субъективные признаки контрабанды огнестрельного оружия или его основных частей   Переходя к рассмотрению субъективной стороны контрабанды, остановимся на теоретическом понятии субъективной стороны состава преступления...

ЛЕЧЕБНО-ПРОФИЛАКТИЧЕСКОЙ ПОМОЩИ НАСЕЛЕНИЮ В УСЛОВИЯХ ОМС 001. Основными путями развития поликлинической помощи взрослому населению в новых экономических условиях являются все...

Хронометражно-табличная методика определения суточного расхода энергии студента Цель: познакомиться с хронометражно-табличным методом опреде­ления суточного расхода энергии...

ОЧАГОВЫЕ ТЕНИ В ЛЕГКОМ Очаговыми легочными инфильтратами проявляют себя различные по этиологии заболевания, в основе которых лежит бронхо-нодулярный процесс, который при рентгенологическом исследовании дает очагового характера тень, размерами не более 1 см в диаметре...

Примеры решения типовых задач. Пример 1.Степень диссоциации уксусной кислоты в 0,1 М растворе равна 1,32∙10-2   Пример 1.Степень диссоциации уксусной кислоты в 0,1 М растворе равна 1,32∙10-2. Найдите константу диссоциации кислоты и значение рК. Решение. Подставим данные задачи в уравнение закона разбавления К = a2См/(1 –a) =...

Studopedia.info - Студопедия - 2014-2025 год . (0.009 сек.) русская версия | украинская версия