Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Метод последовательного дифференцирования





 

Рассмотрим уравнение

 

(9.1)

 

с начальными условиями . Предположим, что искомое частное решение может быть разложено в ряд Тейлора по степеням разности :

Начальные условия непосредственно дают нам значения при . Значение найдем из уравнения (9.1), подставляя и используя начальные условия:

.

Значения последовательно определяются дифференцированием уравнения (9.1) и подстановкой , при .

Доказано, что если правая часть уравнения (9.1) в окрестности точки есть аналитическая функция своих аргументов, то при значениях x, достаточно близких к , существует единственное решение задачи Коши, которое разлагается в ряд Тейлора. Тогда частичная сумма этого ряда будет приближенным решением поставленной задачи.

Аналогично применяется метод последовательного дифференцирования и для решения систем дифференциальных уравнений.

 

Пример 9.1 Найти первые семь членов разложения в степенной ряд решения уравнения y'' +0.1(y')2+(1+0.1 x) y = 0 с начальными условиями y (0)=1, y '(0)=2

 

Решение уравнения ищем в виде ряда

Непосредственно из начальных условий имеем y (0)=1, y '(0)=2

Разрешим уравнение относительно y'';

 

y' '=-0.1(y')2-(1+0.1 x)

 

используя начальные условия, получим

 

y'' (0)=-0.1·4-1·1=-1.4

 

Дифференцируем по x обе части уравнения последовательно получим:

y''' =0.2 y' · y'' -0.1(xy' + y)- y' y'' '(0)=-1.54

 

y (4)=-0.2(y' y''' +(y'')2)-0.1(xy' '+2 y')- y'' y (4)(0)=1.224

 

y (5)= -0.2(y' · y (4)+3 y'' y''') -0.1(xy''' +3 y'')- y''' y (5)(0)=0.1768

 

y (6)(0)= -0.2(y' · y (5)+4 y'' y (4)+3(y''')2)-0.1(x y (4)+4 y''')- y (4) y (6)(0) =-0.7308

 

Искомое решение приближенно запишется в виде:

 

y (x)≈ 1+2 x -0.7 x 2-0.2567 x 3+0.051 x 4+0.00147 x 5-0.00101 x 6

 

Пример 9.2. Найти первые четыре члена разложения в степенной ряд решения y = y (x) z = z(x) системы с начальными условиями y (0)=1 z (0)=0

 

Функции y (x) и z (x) ищем в виде степенных рядов

при х =0 из уравнений системы следует, что y (0)'=1, z (0)'=0

Дифференцируем по х уравнения системы.

Находим y ''(0)=1, z ''(0)=1

Продифференцируем по х уравнения системы еще раз.

y ''' (0)=0, z''' (0)=3

Подставляя найденные значения производных в ряды, получим:

y (x)≈ 1+ x -0.5 x 2, z (x)≈ 0.5 x 2-0.5 x 3







Дата добавления: 2014-11-12; просмотров: 7913. Нарушение авторских прав; Мы поможем в написании вашей работы!




Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...

Кран машиниста усл. № 394 – назначение и устройство Кран машиниста условный номер 394 предназначен для управления тормозами поезда...

Приложение Г: Особенности заполнение справки формы ву-45   После выполнения полного опробования тормозов, а так же после сокращенного, если предварительно на станции было произведено полное опробование тормозов состава от стационарной установки с автоматической регистрацией параметров или без...

Измерение следующих дефектов: ползун, выщербина, неравномерный прокат, равномерный прокат, кольцевая выработка, откол обода колеса, тонкий гребень, протёртость средней части оси Величину проката определяют с помощью вертикального движка 2 сухаря 3 шаблона 1 по кругу катания...

Интуитивное мышление Мышление — это пси­хический процесс, обеспечивающий познание сущности предме­тов и явлений и самого субъекта...

Объект, субъект, предмет, цели и задачи управления персоналом Социальная система организации делится на две основные подсистемы: управляющую и управляемую...

Законы Генри, Дальтона, Сеченова. Применение этих законов при лечении кессонной болезни, лечении в барокамере и исследовании электролитного состава крови Закон Генри: Количество газа, растворенного при данной температуре в определенном объеме жидкости, при равновесии прямо пропорциональны давлению газа...

Studopedia.info - Студопедия - 2014-2025 год . (0.012 сек.) русская версия | украинская версия