Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Метод неопределенных коэффициентов




Этот метод рекомендуют применять при решении линейных дифференциальных уравнений с переменными коэффициентами. Суть метода покажем на примере уравнения второго порядка

с начальными условиями . Предположим, что каждый из коэффициентов уравнения можно разложить в ряд по степеням x:

, , .

Решение данного уравнения будем искать в виде ряда

, (9.3)

где - коэффициенты, подлежащие определению.

Дифференцируем обе части равенства (9.3) два раза по x:

, .

Подставляя полученные ряды для в уравнение , получим:

 

. (9.4)

Произведя умножение рядов и приравняв коэффициенты при одинаковых степенях x в левой и в правой частях тождества (9.4), получим систему

 

(9.5)

 

где означает линейную функцию аргументов .

Каждое уравнение системы (9.5) содержит на одно неизвестное больше по сравнению с предыдущим уравнением. Коэффициенты определяются из начальных условий, а все остальные последовательно определяются из системы (9.5). Доказано, что если ряды , , сходятся при , то полученный степенной ряд сходится в той же области и является решением уравнения

 

.

 

Пример 9.4 Найти решение уравнения с начальными условиями в виде степенного ряда. Ограничиться 6 членами ряда.

 

Разложим коэффициенты уравнения в соответствующие степенные ряды.

p(x)=-x q(x)=-1

Будем искать решение уравнения в виде ряда

y=c0+c1x+c2x2+ c3x3+ c4x4+…+cnxn+… тогда

 

y'=c1+2c2x+3c3x2+4c4x3+…+n cnxn-1+…

 

-y'x=-c1x-2c2x2-3c3x3-4c4x4-…- n cnxn+…

 

y''=2c2+6c3x+12c4x2+20c5x3+…+n(n-1) cnxn-2+…

 

Подставив полученные ряды в уравнение примера, и приравняв коэффициенты при одинаковых степенях, получим систему для определения ci .

c0=0, c1=1 возьмем из начальных условий.

 

x0 c0 + 2 c2 = 0,

x1 6 c3 = 0,

x2 – c2 + 12 c4 = ,

x3 – 2 c3 + 20 c5 = 0,

x4 – 3 c4 + 30 c6 = ,

x5 – 4 c5 + 42 c7 = 0,

x6 – 5 c6 + 56 c8 = .

 

Решая последовательно систему, получим, что нечетные коэффициенты нули, а

Приближенное решение задачи получаем в виде

 







Дата добавления: 2014-11-12; просмотров: 936. Нарушение авторских прав


Рекомендуемые страницы:


Studopedia.info - Студопедия - 2014-2020 год . (0.003 сек.) русская версия | украинская версия