Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Метод неопределенных коэффициентов





Этот метод рекомендуют применять при решении линейных дифференциальных уравнений с переменными коэффициентами. Суть метода покажем на примере уравнения второго порядка

с начальными условиями . Предположим, что каждый из коэффициентов уравнения можно разложить в ряд по степеням x:

, , .

Решение данного уравнения будем искать в виде ряда

, (9.3)

где - коэффициенты, подлежащие определению.

Дифференцируем обе части равенства (9.3) два раза по x:

, .

Подставляя полученные ряды для в уравнение , получим:

 

. (9.4)

Произведя умножение рядов и приравняв коэффициенты при одинаковых степенях x в левой и в правой частях тождества (9.4), получим систему

 

(9.5)

 

где означает линейную функцию аргументов .

Каждое уравнение системы (9.5) содержит на одно неизвестное больше по сравнению с предыдущим уравнением. Коэффициенты определяются из начальных условий, а все остальные последовательно определяются из системы (9.5). Доказано, что если ряды , , сходятся при , то полученный степенной ряд сходится в той же области и является решением уравнения

 

.

 

Пример 9.4 Найти решение уравнения с начальными условиями в виде степенного ряда. Ограничиться 6 членами ряда.

 

Разложим коэффициенты уравнения в соответствующие степенные ряды.

p (x)=- x q (x)=-1

Будем искать решение уравнения в виде ряда

y=c0+c1x+c2x2+ c3x3+ c4x4+…+cnxn +… тогда

 

y'=c1+2c2x+3c3x2+4c4x3+…+n cnxn-1 +…

 

-y'x=-c1x-2c2x2-3c3x3-4c4x4-…- n cnxn +…

 

y''=2c2+6c3x+12c4x2+20c5x3+…+n(n-1) cnxn- 2+…

 

Подставив полученные ряды в уравнение примера, и приравняв коэффициенты при одинаковых степенях, получим систему для определения ci.

c 0=0, c 1=1 возьмем из начальных условий.

 

x0 c0 + 2 c2 = 0,

x1 6 c3 = 0,

x2 – c2 + 12 c4 = ,

x3 – 2 c3 + 20 c5 = 0,

x 4 – 3 c4 + 30 c6 = ,

x 5 – 4 c5 + 42 c7 = 0,

x 6 – 5 c6 + 56 c8 = .

 

Решая последовательно систему, получим, что нечетные коэффициенты нули, а

Приближенное решение задачи получаем в виде

 







Дата добавления: 2014-11-12; просмотров: 1455. Нарушение авторских прав; Мы поможем в написании вашей работы!




Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...

Стресс-лимитирующие факторы Поскольку в каждом реализующем факторе общего адаптацион­ного синдрома при бесконтрольном его развитии заложена потенци­альная опасность появления патогенных преобразований...

ТЕОРИЯ ЗАЩИТНЫХ МЕХАНИЗМОВ ЛИЧНОСТИ В современной психологической литературе встречаются различные термины, касающиеся феноменов защиты...

Этические проблемы проведения экспериментов на человеке и животных В настоящее время четко определены новые подходы и требования к биомедицинским исследованиям...

Различие эмпиризма и рационализма Родоначальником эмпиризма стал английский философ Ф. Бэкон. Основной тезис эмпиризма гласит: в разуме нет ничего такого...

Индекс гингивита (PMA) (Schour, Massler, 1948) Для оценки тяжести гингивита (а в последующем и ре­гистрации динамики процесса) используют папиллярно-маргинально-альвеолярный индекс (РМА)...

Методика исследования периферических лимфатических узлов. Исследование периферических лимфатических узлов производится с помощью осмотра и пальпации...

Studopedia.info - Студопедия - 2014-2025 год . (0.012 сек.) русская версия | украинская версия