Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Метод Эйлера





Рассмотрим дифференциальное уравнение

(9.6)

с начальным условием . Выбрав достаточно малый шаг h, построим систему равноотстоящих точек .

В методе Эйлера приближенные значения вычисляются по формулам . При этом искомая интегральная кривая , проходящая через точку , заменяется ломанной с вершинами ; каждое звено этой ломанной, имеет направление той интегральной кривой уравнения , которая проходит через точку .

Если правая часть уравнения в некотором замкнутом прямоугольнике удовлетворяет условиям

,

,

то имеет место следующая оценка погрешности:

,

где - значение точного решения уравнения при , а - приближенное значение, полученное на n-м шаге в этой же точке.

На практике, для оценки точности полученных результатов, применяют двойной пересчет: расчет повторяют с шагом и погрешность более точного значения в точке оценивают приближенно так:

 

Пример 9.5. Используя метод Эйлера, составить таблицу приближенных значений решения дифференциального уравнения с начальным условием y(0)=2 на отрезке [0; 0.5] с шагом h с точностью до трёх знаков. Выполним это задание в Mathcad

Для этого разделим промежуток [ a, b ] на n частей и найдем шаг интегрирования h.

 

 

 

Разделим промежуток интегрирования на 2n частей и

пересчитаем значения yi с новым шагом h/2

 

 
 
 

 

 

 

 

Решением уравнения является таблица значений уi, найденных в точках отрезка [0; 0.5] с шагом h=0, 01 с точностью до трёх знаков.

 

Рис 9.1 Решение примера 9.5 в Mathcad методом Эйлера

 







Дата добавления: 2014-11-12; просмотров: 1079. Нарушение авторских прав; Мы поможем в написании вашей работы!




Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...

Дренирование желчных протоков Показаниями к дренированию желчных протоков являются декомпрессия на фоне внутрипротоковой гипертензии, интраоперационная холангиография, контроль за динамикой восстановления пассажа желчи в 12-перстную кишку...

Деятельность сестер милосердия общин Красного Креста ярко проявилась в период Тритоны – интервалы, в которых содержится три тона. К тритонам относятся увеличенная кварта (ув.4) и уменьшенная квинта (ум.5). Их можно построить на ступенях натурального и гармонического мажора и минора.  ...

Понятие о синдроме нарушения бронхиальной проходимости и его клинические проявления Синдром нарушения бронхиальной проходимости (бронхообструктивный синдром) – это патологическое состояние...

Принципы резекции желудка по типу Бильрот 1, Бильрот 2; операция Гофмейстера-Финстерера. Гастрэктомия Резекция желудка – удаление части желудка: а) дистальная – удаляют 2/3 желудка б) проксимальная – удаляют 95% желудка. Показания...

Ваготомия. Дренирующие операции Ваготомия – денервация зон желудка, секретирующих соляную кислоту, путем пересечения блуждающих нервов или их ветвей...

Билиодигестивные анастомозы Показания для наложения билиодигестивных анастомозов: 1. нарушения проходимости терминального отдела холедоха при доброкачественной патологии (стенозы и стриктуры холедоха) 2. опухоли большого дуоденального сосочка...

Studopedia.info - Студопедия - 2014-2025 год . (0.01 сек.) русская версия | украинская версия