Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Метод Эйлера





Рассмотрим дифференциальное уравнение

(9.6)

с начальным условием . Выбрав достаточно малый шаг h, построим систему равноотстоящих точек .

В методе Эйлера приближенные значения вычисляются по формулам . При этом искомая интегральная кривая , проходящая через точку , заменяется ломанной с вершинами ; каждое звено этой ломанной, имеет направление той интегральной кривой уравнения , которая проходит через точку .

Если правая часть уравнения в некотором замкнутом прямоугольнике удовлетворяет условиям

,

,

то имеет место следующая оценка погрешности:

,

где - значение точного решения уравнения при , а - приближенное значение, полученное на n-м шаге в этой же точке.

На практике, для оценки точности полученных результатов, применяют двойной пересчет: расчет повторяют с шагом и погрешность более точного значения в точке оценивают приближенно так:

 

Пример 9.5. Используя метод Эйлера, составить таблицу приближенных значений решения дифференциального уравнения с начальным условием y(0)=2 на отрезке [0; 0.5] с шагом h с точностью до трёх знаков. Выполним это задание в Mathcad

Для этого разделим промежуток [ a, b ] на n частей и найдем шаг интегрирования h.

 

 

 

Разделим промежуток интегрирования на 2n частей и

пересчитаем значения yi с новым шагом h/2

 

 
 
 

 

 

 

 

Решением уравнения является таблица значений уi, найденных в точках отрезка [0; 0.5] с шагом h=0, 01 с точностью до трёх знаков.

 

Рис 9.1 Решение примера 9.5 в Mathcad методом Эйлера

 







Дата добавления: 2014-11-12; просмотров: 1079. Нарушение авторских прав; Мы поможем в написании вашей работы!




Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...

Характерные черты официально-делового стиля Наиболее характерными чертами официально-делового стиля являются: • лаконичность...

Этапы и алгоритм решения педагогической задачи Технология решения педагогической задачи, так же как и любая другая педагогическая технология должна соответствовать критериям концептуальности, системности, эффективности и воспроизводимости...

Понятие и структура педагогической техники Педагогическая техника представляет собой важнейший инструмент педагогической технологии, поскольку обеспечивает учителю и воспитателю возможность добиться гармонии между содержанием профессиональной деятельности и ее внешним проявлением...

Огоньки» в основной период В основной период смены могут проводиться три вида «огоньков»: «огонек-анализ», тематический «огонек» и «конфликтный» огонек...

Упражнение Джеффа. Это список вопросов или утверждений, отвечая на которые участник может раскрыть свой внутренний мир перед другими участниками и узнать о других участниках больше...

Влияние первой русской революции 1905-1907 гг. на Казахстан. Революция в России (1905-1907 гг.), дала первый толчок политическому пробуждению трудящихся Казахстана, развитию национально-освободительного рабочего движения против гнета. В Казахстане, находившемся далеко от политических центров Российской империи...

Studopedia.info - Студопедия - 2014-2025 год . (0.012 сек.) русская версия | украинская версия