Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Метод последовательных приближений





 

Рассмотрим задачу Коши для дифференциального уравнения первого порядка

с начальным условием . Решение этой задачи эквивалентно решению интегрального уравнения

Метод последовательных приближений состоит в том, что решение получают как предел последовательности функций , которые находятся по рекуррентной формуле

.

Доказано, если правая часть в некотором замкнутом прямоугольнике удовлетворяет условию Липшица по y:

,

то независимо от выбора начальной функции последовательные приближения сходятся на некотором отрезке к решению задачи Коши.

Если f(x, y) непрерывна в прямоугольнике R, то оценка погрешности дается неравенством

,

где , а число h определяется из условия

.

В качестве начального приближения можно взять любую функцию, достаточно близкую к точному решению.

 

Пример 9.3. Найти три последовательных приближения решения уравнения

 

y'=x2+y2 с начальным условием y (0)=0.

 

Учитывая начальное условие, заменяем уравнение интегральным

В качестве начального приближения возьмем y0 (x)≡ 0

Первое приближение находим по формуле

Аналогично получим второе и третье приближения:

 

На практике количество приближений выбирают так, чтобы yn и yn -1 приближения совпадали в пределах допустимой точности. Для n =3 и

y 3 вычислено с точностью порядка 0.001.

 







Дата добавления: 2014-11-12; просмотров: 1698. Нарушение авторских прав; Мы поможем в написании вашей работы!




Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...

Роль органов чувств в ориентировке слепых Процесс ориентации протекает на основе совместной, интегративной деятельности сохранных анализаторов, каждый из которых при определенных объективных условиях может выступать как ведущий...

Лечебно-охранительный режим, его элементы и значение.   Терапевтическое воздействие на пациента подразумевает не только использование всех видов лечения, но и применение лечебно-охранительного режима – соблюдение условий поведения, способствующих выздоровлению...

Тема: Кинематика поступательного и вращательного движения. 1. Твердое тело начинает вращаться вокруг оси Z с угловой скоростью, проекция которой изменяется со временем 1. Твердое тело начинает вращаться вокруг оси Z с угловой скоростью...

Факторы, влияющие на степень электролитической диссоциации Степень диссоциации зависит от природы электролита и растворителя, концентрации раствора, температуры, присутствия одноименного иона и других факторов...

Йодометрия. Характеристика метода Метод йодометрии основан на ОВ-реакциях, связанных с превращением I2 в ионы I- и обратно...

Броматометрия и бромометрия Броматометрический метод основан на окислении вос­становителей броматом калия в кислой среде...

Studopedia.info - Студопедия - 2014-2025 год . (0.01 сек.) русская версия | украинская версия