Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Квадратурная формула Чебышева





Рассмотрим квадратурную формулу

, (8.10)

где - постоянные коэффициенты. Чебышев предположил выбрать абсциссы таким образом, чтобы:

1. коэффициенты были равны между собой;

2. квадратурная формула (8.10) являлась точной для всех полиномов до степени n включительно.

Покажем, как могут быть найдены в этом случае величины и . Полагаем . Учитывая, что при , будем иметь , получаем . Следовательно, квадратурная формула Чебышева имеет вид:

. (8.11)

Для определения абсцисс заметим, что формула (8.11) согласно условию 2 должна быть точной для функции вида . Подставляя эти функции в формулу (8.11), получим систему уравнений:

, (8.12)

из которой могут быть определены неизвестные . Заметим, что система (8.12) при n =8 и n ³ 10 не имеет действительных решений.

 

Выведем формулу Чебышева с тремя ординатами (n =3).

Для определения абсцисс имеем систему уравнений:

 

(8.13)

 

Рассмотрим симметрические функции корней:

 

Из системы (8.13) имеем:

 

Отсюда заключаем по теореме Виета, что есть корни вспомогательного уравнения или . Следовательно, можно принять: .

Таким образом, соответствующая формула Чебышева имеет вид .

Чтобы применить квадратурную формулу Чебышева к интегралу вида , следует преобразовать его с помощью подстановки:

, переводящей отрезок в отрезок . Применяя к преобразованному интегралу формулу Чебышева, будем иметь

,

где и - корни системы (8.13).

В таблице приведены значения корней ti системы (8.12) для n= 1, 2…, 7.

Таблица 8.1

Значения абсцисс ti в формуле Чебышева

n i ti
  2; 1 ±0.577350
  3; 1 ±0.707107
  4; 1 3; 2 ±0.794654 ±0.187592
  5; 1 4; 2 ±0.832498 ±0.374541
  6; 1 5; 2 4; 3 ±0.866247 ±0.422519 ±0.266635
  7; 1 6; 2 5; 3 ±0.883862 ±0.529657 ±0.323912


Пример 8.3. Вычислить интеграл из предыдущего примера по формуле Чебышева для четырех и для пяти точек в Mathcad.

 

 

 

Оценить точность вычислений.

 

 

 

Вычисление интеграла методом Чебышева для 5точек

 

 

 

 

 

 

Рис. 8.3. Решение примера 8.2 в Mathcad

 







Дата добавления: 2014-11-12; просмотров: 6867. Нарушение авторских прав; Мы поможем в написании вашей работы!




Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...

Определение трудоемкости работ и затрат машинного времени На основании ведомости объемов работ по объекту и норм времени ГЭСН составляется ведомость подсчёта трудоёмкости, затрат машинного времени, потребности в конструкциях, изделиях и материалах (табл...

Гидравлический расчёт трубопроводов Пример 3.4. Вентиляционная труба d=0,1м (100 мм) имеет длину l=100 м. Определить давление, которое должен развивать вентилятор, если расход воздуха, подаваемый по трубе, . Давление на выходе . Местных сопротивлений по пути не имеется. Температура...

Огоньки» в основной период В основной период смены могут проводиться три вида «огоньков»: «огонек-анализ», тематический «огонек» и «конфликтный» огонек...

Схема рефлекторной дуги условного слюноотделительного рефлекса При неоднократном сочетании действия предупреждающего сигнала и безусловного пищевого раздражителя формируются...

Уравнение волны. Уравнение плоской гармонической волны. Волновое уравнение. Уравнение сферической волны Уравнением упругой волны называют функцию , которая определяет смещение любой частицы среды с координатами относительно своего положения равновесия в произвольный момент времени t...

Медицинская документация родильного дома Учетные формы родильного дома № 111/у Индивидуальная карта беременной и родильницы № 113/у Обменная карта родильного дома...

Studopedia.info - Студопедия - 2014-2025 год . (0.008 сек.) русская версия | украинская версия