Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Квадратурная формула Чебышева





Рассмотрим квадратурную формулу

, (8.10)

где - постоянные коэффициенты. Чебышев предположил выбрать абсциссы таким образом, чтобы:

1. коэффициенты были равны между собой;

2. квадратурная формула (8.10) являлась точной для всех полиномов до степени n включительно.

Покажем, как могут быть найдены в этом случае величины и . Полагаем . Учитывая, что при , будем иметь , получаем . Следовательно, квадратурная формула Чебышева имеет вид:

. (8.11)

Для определения абсцисс заметим, что формула (8.11) согласно условию 2 должна быть точной для функции вида . Подставляя эти функции в формулу (8.11), получим систему уравнений:

, (8.12)

из которой могут быть определены неизвестные . Заметим, что система (8.12) при n =8 и n ³ 10 не имеет действительных решений.

 

Выведем формулу Чебышева с тремя ординатами (n =3).

Для определения абсцисс имеем систему уравнений:

 

(8.13)

 

Рассмотрим симметрические функции корней:

 

Из системы (8.13) имеем:

 

Отсюда заключаем по теореме Виета, что есть корни вспомогательного уравнения или . Следовательно, можно принять: .

Таким образом, соответствующая формула Чебышева имеет вид .

Чтобы применить квадратурную формулу Чебышева к интегралу вида , следует преобразовать его с помощью подстановки:

, переводящей отрезок в отрезок . Применяя к преобразованному интегралу формулу Чебышева, будем иметь

,

где и - корни системы (8.13).

В таблице приведены значения корней ti системы (8.12) для n= 1, 2…, 7.

Таблица 8.1

Значения абсцисс ti в формуле Чебышева

n i ti
  2; 1 ±0.577350
  3; 1 ±0.707107
  4; 1 3; 2 ±0.794654 ±0.187592
  5; 1 4; 2 ±0.832498 ±0.374541
  6; 1 5; 2 4; 3 ±0.866247 ±0.422519 ±0.266635
  7; 1 6; 2 5; 3 ±0.883862 ±0.529657 ±0.323912


Пример 8.3. Вычислить интеграл из предыдущего примера по формуле Чебышева для четырех и для пяти точек в Mathcad.

 

 

 

Оценить точность вычислений.

 

 

 

Вычисление интеграла методом Чебышева для 5точек

 

 

 

 

 

 

Рис. 8.3. Решение примера 8.2 в Mathcad

 







Дата добавления: 2014-11-12; просмотров: 6867. Нарушение авторских прав; Мы поможем в написании вашей работы!




Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...

Различия в философии античности, средневековья и Возрождения ♦Венцом античной философии было: Единое Благо, Мировой Ум, Мировая Душа, Космос...

Характерные черты немецкой классической философии 1. Особое понимание роли философии в истории человечества, в развитии мировой культуры. Классические немецкие философы полагали, что философия призвана быть критической совестью культуры, «душой» культуры. 2. Исследовались не только человеческая...

Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит...

Дренирование желчных протоков Показаниями к дренированию желчных протоков являются декомпрессия на фоне внутрипротоковой гипертензии, интраоперационная холангиография, контроль за динамикой восстановления пассажа желчи в 12-перстную кишку...

Деятельность сестер милосердия общин Красного Креста ярко проявилась в период Тритоны – интервалы, в которых содержится три тона. К тритонам относятся увеличенная кварта (ув.4) и уменьшенная квинта (ум.5). Их можно построить на ступенях натурального и гармонического мажора и минора.  ...

Понятие о синдроме нарушения бронхиальной проходимости и его клинические проявления Синдром нарушения бронхиальной проходимости (бронхообструктивный синдром) – это патологическое состояние...

Studopedia.info - Студопедия - 2014-2025 год . (0.011 сек.) русская версия | украинская версия