Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Квадратурная формула Чебышева





Рассмотрим квадратурную формулу

, (8.10)

где - постоянные коэффициенты. Чебышев предположил выбрать абсциссы таким образом, чтобы:

1. коэффициенты были равны между собой;

2. квадратурная формула (8.10) являлась точной для всех полиномов до степени n включительно.

Покажем, как могут быть найдены в этом случае величины и . Полагаем . Учитывая, что при , будем иметь , получаем . Следовательно, квадратурная формула Чебышева имеет вид:

. (8.11)

Для определения абсцисс заметим, что формула (8.11) согласно условию 2 должна быть точной для функции вида . Подставляя эти функции в формулу (8.11), получим систему уравнений:

, (8.12)

из которой могут быть определены неизвестные . Заметим, что система (8.12) при n =8 и n ³ 10 не имеет действительных решений.

 

Выведем формулу Чебышева с тремя ординатами (n =3).

Для определения абсцисс имеем систему уравнений:

 

(8.13)

 

Рассмотрим симметрические функции корней:

 

Из системы (8.13) имеем:

 

Отсюда заключаем по теореме Виета, что есть корни вспомогательного уравнения или . Следовательно, можно принять: .

Таким образом, соответствующая формула Чебышева имеет вид .

Чтобы применить квадратурную формулу Чебышева к интегралу вида , следует преобразовать его с помощью подстановки:

, переводящей отрезок в отрезок . Применяя к преобразованному интегралу формулу Чебышева, будем иметь

,

где и - корни системы (8.13).

В таблице приведены значения корней ti системы (8.12) для n= 1, 2…, 7.

Таблица 8.1

Значения абсцисс ti в формуле Чебышева

n i ti
  2; 1 ±0.577350
  3; 1 ±0.707107
  4; 1 3; 2 ±0.794654 ±0.187592
  5; 1 4; 2 ±0.832498 ±0.374541
  6; 1 5; 2 4; 3 ±0.866247 ±0.422519 ±0.266635
  7; 1 6; 2 5; 3 ±0.883862 ±0.529657 ±0.323912


Пример 8.3. Вычислить интеграл из предыдущего примера по формуле Чебышева для четырех и для пяти точек в Mathcad.

 

 

 

Оценить точность вычислений.

 

 

 

Вычисление интеграла методом Чебышева для 5точек

 

 

 

 

 

 

Рис. 8.3. Решение примера 8.2 в Mathcad

 







Дата добавления: 2014-11-12; просмотров: 6867. Нарушение авторских прав; Мы поможем в написании вашей работы!




Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...

БИОХИМИЯ ТКАНЕЙ ЗУБА В составе зуба выделяют минерализованные и неминерализованные ткани...

Типология суицида. Феномен суицида (самоубийство или попытка самоубийства) чаще всего связывается с представлением о психологическом кризисе личности...

ОСНОВНЫЕ ТИПЫ МОЗГА ПОЗВОНОЧНЫХ Ихтиопсидный тип мозга характерен для низших позвоночных - рыб и амфибий...

Законы Генри, Дальтона, Сеченова. Применение этих законов при лечении кессонной болезни, лечении в барокамере и исследовании электролитного состава крови Закон Генри: Количество газа, растворенного при данной температуре в определенном объеме жидкости, при равновесии прямо пропорциональны давлению газа...

Ганглиоблокаторы. Классификация. Механизм действия. Фармакодинамика. Применение.Побочные эфффекты Никотинчувствительные холинорецепторы (н-холинорецепторы) в основном локализованы на постсинаптических мембранах в синапсах скелетной мускулатуры...

Шов первичный, первично отсроченный, вторичный (показания) В зависимости от времени и условий наложения выделяют швы: 1) первичные...

Studopedia.info - Студопедия - 2014-2025 год . (0.01 сек.) русская версия | украинская версия