Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Итерационные методы для обратного интерполирования





 

Если функция y = f(x) задана таблицей с равноотстоящими узлами, то записываем для нее один из интерполяционных многочленов, например первый интерполяционный многочлен Ньютона:

(5.4)

Рассматривая последнее выражение как уравнение относительно q, находим q по заданному значению y, а затем вычисляем x=x0+qh

Если число узлов велико, то получим алгебраическое уравнение высокой степени, при решении которого удобно применять метод итераций. Запишем уравнение (5.4) в виде

(5.5)

За начальное приближение принимаем ,

а затем применяем процесс итерации

В большинстве случаев при достаточно малом шаге h = xi+1-xi процесс итерации сходится к искомому корню.

Условием сходимости является выполнение неравенства

На практике считают до тех пор, пока два последовательных значения qk и qk+1 не совпадут с заданной точностью.

 

Пример 5.6 Используя таблицу значений функции y = sh x найти x при котором sh x=5.

 

Таблица 5.5.

Значения функции y = sh x

x y Δ y Δ 2y Δ 3y
2.2 4.457 1.009 0.220 0.054
2.4 5.466 1.229 0.274 0.043
2.6 6.695 1.503 0.317  
2.8 8.198 1.820    
3.0 10.018      

 

Составляем первый интерполяционный многочлен Ньютона, останавливаясь на разностях третьего порядка, которые практически уже постоянны:

Полагаем x0 = 2.2, так как заданное значение y = 5 находится между y0 = 4.457 и y1 = 5.466. Итерирующая функция имеет вид

Начальное приближении

Затем последовательно находим

Таким образом, мы можем принять q = 0.564 и

 

x = 2.2+0.564*0.2 = 2.313

с точностью до 0.001.

 








Дата добавления: 2014-11-12; просмотров: 836. Нарушение авторских прав; Мы поможем в написании вашей работы!




Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...

Весы настольные циферблатные Весы настольные циферблатные РН-10Ц13 (рис.3.1) выпускаются с наибольшими пределами взвешивания 2...

Хронометражно-табличная методика определения суточного расхода энергии студента Цель: познакомиться с хронометражно-табличным методом опреде­ления суточного расхода энергии...

ОЧАГОВЫЕ ТЕНИ В ЛЕГКОМ Очаговыми легочными инфильтратами проявляют себя различные по этиологии заболевания, в основе которых лежит бронхо-нодулярный процесс, который при рентгенологическом исследовании дает очагового характера тень, размерами не более 1 см в диаметре...

Основные структурные физиотерапевтические подразделения Физиотерапевтическое подразделение является одним из структурных подразделений лечебно-профилактического учреждения, которое предназначено для оказания физиотерапевтической помощи...

Почему важны муниципальные выборы? Туристическая фирма оставляет за собой право, в случае причин непреодолимого характера, вносить некоторые изменения в программу тура без уменьшения общего объема и качества услуг, в том числе предоставлять замену отеля на равнозначный...

Тема 2: Анатомо-топографическое строение полостей зубов верхней и нижней челюстей. Полость зуба — это сложная система разветвлений, имеющая разнообразную конфигурацию...

Studopedia.info - Студопедия - 2014-2025 год . (0.01 сек.) русская версия | украинская версия