Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Теорема Ферма





Если функция у=f(x) непрерывна в промежутке (а; в), в некоторой точке х0 этого промежутка достигает максимума (или минимума) и дифференцируема в этой точке (а) и в) рис.), то ее производная в этой точке равна нулю.

На рисунках а) в) у/(х0)=0, значит касательная, проведенная к графику этой функции в точке М0 будет параллельная оси (ох). На рисунке а) слева от точки М0 у=f(x) (вверх), с права вниз. На рисунке в). Слева от точки М0 у=f(x) (вниз), а справа вверх. Аналогично 1) и 2) ведет себя функция и на рисунках соответственно б) и г), с одной лишь разницей, чем в точках х0 функция не дифференцируема, так как касательная в точке М0 перпендикулярна оси ох.

Из этих рассуждений можно составить первое правило нахождения экстремума функции и исследовании ее на монотонность.

Правило исследования функции у=f(x) с помощью первой производной.

Пусть дана функция у=f(x).

1. Найдем у/.

2. Найдем корни у/, или точки, в которых у/ - не существует. Эти точки называются критическими точками первого рода.

3. Расположим критические точки на числовой прямой (в порядке возрастания) и проверим знак производной в каждом полученном промежутке значений х.

 

В точке x1, x3 y/=0, а в точках x2, x4, x6. – не , в точках x1, x3 касательная параллельна оси ОХ, в остальных критических точках параллельная оси ОХ (рис. 2) и (рис. б)). В точке х3 смены знака производной не произошло, значит в этой точке экстремума нет, но график делает «горизонтальный» перегиб, аналогично в точке х6 только «вертикальный» перегиб.

Если сделать схематичный рисунок графика, то он будет выглядеть примерно так:

В точках M2, M4, M5 – иногда называют экстремумы «пиками» минимум – пика, максимум пика. А перегибы в токах М3 и М6 – перегиб – «колено».

Когда касательная в токах М3 и М6 параллельна оси ОХ или оси ОУ.







Дата добавления: 2014-10-22; просмотров: 655. Нарушение авторских прав; Мы поможем в написании вашей работы!




Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...

Ганглиоблокаторы. Классификация. Механизм действия. Фармакодинамика. Применение.Побочные эфффекты Никотинчувствительные холинорецепторы (н-холинорецепторы) в основном локализованы на постсинаптических мембранах в синапсах скелетной мускулатуры...

Шов первичный, первично отсроченный, вторичный (показания) В зависимости от времени и условий наложения выделяют швы: 1) первичные...

Предпосылки, условия и движущие силы психического развития Предпосылки –это факторы. Факторы психического развития –это ведущие детерминанты развития чел. К ним относят: среду...

Условия приобретения статуса индивидуального предпринимателя. В соответствии с п. 1 ст. 23 ГК РФ гражданин вправе заниматься предпринимательской деятельностью без образования юридического лица с момента государственной регистрации в качестве индивидуального предпринимателя. Каковы же условия такой регистрации и...

Седалищно-прямокишечная ямка Седалищно-прямокишечная (анальная) ямка, fossa ischiorectalis (ischioanalis) – это парное углубление в области промежности, находящееся по бокам от конечного отдела прямой кишки и седалищных бугров, заполненное жировой клетчаткой, сосудами, нервами и...

Основные структурные физиотерапевтические подразделения Физиотерапевтическое подразделение является одним из структурных подразделений лечебно-профилактического учреждения, которое предназначено для оказания физиотерапевтической помощи...

Studopedia.info - Студопедия - 2014-2025 год . (0.01 сек.) русская версия | украинская версия